Advertisement

Genetic Variability in the Dopamine System (Dopamine Receptor D4, Catechol-O-Methyltransferase) Modulates Neurophysiological Responses to Gains and Losses

      Background

      Interindividual variability in the processing of reward might be partially explained by genetic differences in the dopamine system. Here, we study whether brain responses (event-related potentials [ERPs], oscillatory activity) to monetary gains and losses in normal human subjects are modulated as a function of two dopaminergic polymorphisms (catechol-O-methyltransferase [COMT] valine [Val]158methionine [Met], dopamine receptor D4 [DRD4] single nucleotide polymorphism [SNP] -521).

      Methods

      Forty participants homozygous for the different alleles of both polymorphisms were selected from a larger population to assess the main effects and interactions. Based on the phasic/tonic dopamine hypothesis, we expected increased brain responses to losses and gains in participants homozygous for the Val/Val variant of the COMT polymorphism (related to higher enzyme activity).

      Results

      The medial frontal negativity (MFN) of the ERP and the increase in beta power for gains were enhanced for participants homozygous for the COMT ValVal allele when compared with homozygous MetMet participants. In contrast, no modulations in gain- and loss-related brain activity were found to be a function of the DRD4 SNP -521 polymorphism.

      Conclusions

      The results demonstrate the role of the COMT Val/Met polymorphism in the processing of reward, consistent with theoretical explanations that suggest the possible role of dopamine in the MFN and beta power increase generation. In addition, the present results might agree with the phasic/tonic dopamine theory that predicts higher phasic dopamine responses in ValVal participants.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Beuten J.
        • Payne T.J.
        • Ma J.Z.
        • Li M.D.
        Significant association of catechol-O-methyltransferase (COMT) haplotypes with nicotine dependence in male and female smokers of two ethnic populations.
        Neuropsychopharmacology. 2006; 31: 675-684
        • Tsai S.J.
        • Hong C.J.
        • Yu Y.W.
        • Chen T.J.
        Association study of catechol-O-methyltransferase gene and dopamine D4 receptor gene polymorphisms and personality traits in healthy young Chinese females.
        Neuropsychobiology. 2004; 50: 153-156
        • Vandenbergh D.J.
        • Rodriguez L.A.
        • Miller I.T.
        • Uhl G.R.
        • Lachman H.M.
        High-activity catechol-O-methyltransferase allele is more prevalent in polysubstance abusers.
        Am J Med Genet. 1997; 74: 439-442
        • Berridge K.C.
        • Robinson T.E.
        What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience?.
        Brain Res Brain Res Rev. 1998; 28: 309-369
        • Lachman H.M.
        • Papolos D.F.
        • Saito T.
        • Yu Y.M.
        • Szumlanski C.I.
        • Weinshilboum R.M.
        Human catechol-O-methyltransferase pharmacogenetics: Description of a functional polymorphism and its potential application to neuropsychiatric disorders.
        Pharmacogenetics. 1996; 6: 243-250
        • Gogos J.A.
        • Morgan M.
        • Luine V.
        • Santha M.
        • Ogawa S.
        • Pfaff D.
        • Karayiorgou M.
        Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior.
        Proc Natl Acad Sci U S A. 1998; 95: 9991-9996
        • Weinberger D.R.
        Implications of normal brain development for the pathogenesis of schizophrenia.
        Arch Gen Psychiatry. 1987; 44: 660-669
        • Akil M.
        • Kolachana B.S.
        • Rothmond D.A.
        • Hyde T.M.
        • Weinberger D.R.
        • Kleinman J.E.
        Catechol-O-methyltransferase genotype and dopamine regulation in the human brain.
        J Neurosci. 2003; 23: 2008-2013
        • Grace A.A.
        Gating of information flow within the limbic system and the pathophysiology of schizophrenia.
        Brain Res Brain Res Rev. 2000; 31: 330-341
        • Meyer-Lindenberg A.
        • Kohn P.D.
        • Kolachana B.
        • Kippenhan S.
        • Inerney-Leo A.
        • Nussbaum R.
        • et al.
        Midbrain dopamine and prefrontal function in humans: Interaction and modulation by COMT genotype.
        Nat Neurosci. 2005; 8: 594-596
        • Bilder R.M.
        • Volavka J.
        • Lachman H.M.
        • Grace A.A.
        The catechol-O-methyltransferase polymorphism: Relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes.
        Neuropsychopharmacology. 2004; 29: 1943-1961
        • Goldman-Rakic P.S.
        • Muly III, E.C.
        • Williams G.V.
        D(1) receptors in prefrontal cells and circuits.
        Brain Res Brain Res Rev. 2000; 31: 295-301
        • Tunbridge E.M.
        • Harrison P.J.
        • Weinberger D.R.
        Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond.
        Biol Psychiatry. 2006; 60: 141-151
        • Grace A.A.
        Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia.
        Neuroscience. 1991; 41: 1-24
        • Grace A.A.
        • Floresco S.B.
        • Goto Y.
        • Lodge D.J.
        Regulation of firing of dopaminergic neurons and control of goal-directed behaviors.
        Trends Neurosci. 2007; 30: 220-227
        • Barnett J.H.
        • Scoriels L.
        • Munafo M.R.
        Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism.
        Biol Psychiatry. 2008; 64: 137-144
        • Seeman P.
        • Van Tol H.H.
        Dopamine receptor pharmacology.
        Trends Pharmacol Sci. 1994; 15: 264-270
        • Bellgrove M.A.
        • Hawi Z.
        • Lowe N.
        • Kirley A.
        • Robertson I.H.
        • Gill M.
        DRD4 gene variants and sustained attention in attention deficit hyperactivity disorder (ADHD): Effects of associated alleles at the VNTR and -521 SNP.
        Am J Med Genet B Neuropsychiatr Genet. 2005; 136B: 81-86
        • Swanson J.M.
        • Kinsbourne M.
        • Nigg J.
        • Lanphear B.
        • Stefanatos G.A.
        • Volkow N.
        • et al.
        Etiologic subtypes of attention-deficit/hyperactivity disorder: Brain imaging, molecular genetic and environmental factors and the dopamine hypothesis.
        Neuropsychol Rev. 2007; 17: 39-59
        • Okuyama Y.
        • Ishiguro H.
        • Toru M.
        • Arinami T.
        A genetic polymorphism in the promoter region of DRD4 associated with expression and schizophrenia.
        Biochem Biophys Res Commun. 1999; 258: 292-295
        • Ariano M.A.
        • Wang J.
        • Noblett K.L.
        • Larson E.R.
        • Sibley D.R.
        Cellular distribution of the rat D4 dopamine receptor protein in the CNS using anti-receptor antisera.
        Brain Res. 1997; 752: 26-34
        • Meador-Woodruff J.H.
        • Damask S.P.
        • Watson Jr, S.J.
        Differential expression of autoreceptors in the ascending dopamine systems of the human brain.
        Proc Natl Acad Sci U S A. 1994; 91: 8297-8301
        • Mrzljak L.
        • Bergson C.
        • Pappy M.
        • Huff R.
        • Levenson R.
        • Goldman-Rakic P.S.
        Localization of dopamine D4 receptors in GABAergic neurons of the primate brain.
        Nature. 1996; 381: 245-248
        • Oak J.N.
        • Oldenhof J.
        • Van Tol H.H.M.
        The dopamine D-4 receptor: One decade of research.
        Eur J Pharmacol. 2000; 405: 303-327
        • Golimbet V.E.
        • Alfimova M.V.
        • Gritsenko I.K.
        • Ebstein R.P.
        Relationship between dopamine system genes and extraversion and novelty seeking.
        Neurosci Behav Physiol. 2007; 37: 601-606
        • Rubinstein M.
        • Phillips T.J.
        • Bunzow J.R.
        • Falzone T.L.
        • Dziewczapolski G.
        • Zhang G.
        • et al.
        Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine.
        Cell. 1997; 90: 991-1001
        • Schinka J.A.
        • Letsch E.A.
        • Crawford F.C.
        DRD4 and novelty seeking: Results of meta-analyses.
        Am J Med Genet. 2002; 114: 643-648
        • Kramer U.M.
        • Cunillera T.
        • Camara E.
        • Marco-Pallares J.
        • Cucurell D.
        • Nager W.
        • et al.
        The impact of catechol-O-methyltransferase and dopamine D4 receptor genotypes on neurophysiological markers of performance monitoring.
        J Neurosci. 2007; 27: 14190-14198
        • Gehring W.J.
        • Willoughby A.R.
        The medial frontal cortex and the rapid processing of monetary gains and losses.
        Science. 2002; 295: 2279-2282
        • Holroyd C.B.
        • Coles M.G.
        • Nieuwenhuis S.
        Medial prefrontal cortex and error potentials.
        Science. 2002; 296: 1610-1611
        • Nieuwenhuis S.
        • Slagter H.A.
        • von Geusau N.J.
        • Heslenfeld D.J.
        • Holroyd C.B.
        Knowing good from bad: Differential activation of human cortical areas by positive and negative outcomes.
        Eur J Neurosci. 2005; 21: 3161-3168
        • Nieuwenhuis S.
        • Yeung N.
        • Holroyd C.B.
        • Schurger A.
        • Cohen J.D.
        Sensitivity of electrophysiological activity from medial frontal cortex to utilitarian and performance feedback.
        Cereb Cortex. 2004; 14: 741-747
        • Muller S.V.
        • Moller J.
        • Rodriguez-Fornells A.
        • Münte T.F.
        Brain potentials related to self-generated and external information used for performance monitoring.
        Clin Neurophysiol. 2005; 116: 63-74
        • Holroyd C.B.
        • Coles M.G.
        The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity.
        Psychol Rev. 2002; 109: 679-709
        • Holroyd C.B.
        • Hajcak G.
        • Larsen J.T.
        The good, the bad and the neutral: Electrophysiological responses to feedback stimuli.
        Brain Res. 2006; 1105: 93-101
        • Jocham G.
        • Ullsperger M.
        Neuropharmacology of performance monitoring.
        Neurosci Biobehav Rev. 2009; 33: 48-60
        • Marco-Pallares J.
        • Cucurell D.
        • Cunillera T.
        • García R.
        • Andrés-Pueyo A.
        • Münte T.
        • Rodriguez-Fornells A.
        Human oscillatory activity associated to reward processing in a gambling task.
        Neuropsychologia. 2007; 46: 241-248
        • Cohen M.X.
        • Elger C.E.
        • Ranganath C.
        Reward expectation modulates feedback-related negativity and EEG spectra.
        Neuroimage. 2007; 35: 968-978
        • Tallon-Baudry C.
        • Bertrand O.
        • Delpuech C.
        • Pernier J.
        Oscillatory gamma-band (30-70 Hz) activity induced by a visual search task in humans.
        J Neurosci. 1997; 17: 722-734
        • Yeung N.
        • Sanfey A.G.
        Independent coding of reward magnitude and valence in the human brain.
        J Neurosci. 2004; 24: 6258-6264
        • Holroyd C.B.
        • Krigolson O.E.
        Reward prediction error signals associated with a modified time estimation task.
        Psychophysiology. 2007; 44: 913-917
        • Tan H.Y.
        • Chen Q.
        • Goldberg T.E.
        • Mattay V.S.
        • Meyer-Lindenberg A.
        • Weinberger D.R.
        • Callicott J.H.
        Catechol-O-methyltransferase Val158Met modulation of prefrontal-parietal-striatal brain systems during arithmetic and temporal transformations in working memory.
        J Neurosci. 2007; 27: 13393-13401
        • Yacubian J.
        • Sommer T.
        • Schroeder K.
        • Glascher J.
        • Kalisch R.
        • Leuenberger B.
        • et al.
        Gene-gene interaction associated with neural reward sensitivity.
        Proc Natl Acad Sci U S A. 2007; 104: 8125-8130
        • Meyer-Lindenberg A.
        • Weinberger D.R.
        Intermediate phenotypes and genetic mechanisms of psychiatric disorders.
        Nat Rev Neurosci. 2006; 7: 818-827
        • Paus T.
        Primate anterior cingulate cortex: Where motor control, drive and cognition interface.
        Nat Rev Neurosci. 2001; 2: 417-424
        • Morecraft R.J.
        • Van Hoesen G.W.
        Convergence of limbic input to the cingulate motor cortex in the rhesus monkey.
        Brain Res Bull. 1998; 45: 209-232
        • Münte T.F.
        • Heldmann M.
        • Hinrichs H.
        • Marco-Pallares J.
        • Kramer U.M.
        • Sturm V.
        • Heinze H.J.
        Nucleus accumbens is involved in human action monitoring: Evidence from invasive electrophysiological recordings [published online ahead of print March 28].
        Front Hum Neurosci. 2008;
        • Holroyd C.B.
        • Pakzad-Vaezi K.L.
        • Krigolson O.E.
        The feedback correct-related positivity: Sensitivity of the event-related brain potential to unexpected positive feedback.
        Psychophysiology. 2008; 45: 688-697
        • Courtemanche R.
        • Fujii N.
        • Graybiel A.M.
        Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys.
        J Neurosci. 2003; 23: 11741-11752
        • Hallschmid M.
        • Molle M.
        • Fischer S.
        • Born J.
        EEG synchronization upon reward in man.
        Clin Neurophysiol. 2002; 113: 1059-1065
        • Buzsaki G.
        • Draguhn A.
        Neuronal oscillations in cortical networks.
        Science. 2004; 304: 1926-1929
        • Breiter H.C.
        • Aharon I.
        • Kahneman D.
        • Dale A.
        • Shizgal P.
        Functional imaging of neural responses to expectancy and experience of monetary gains and losses.
        Neuron. 2001; 30: 619-639
        • Dreher J.C.
        • Kohn P.
        • Berman K.F.
        Neural coding of distinct statistical properties of reward information in humans.
        Cereb Cortex. 2006; 16: 561-573
        • Schultz W.
        Multiple dopamine functions at different time courses.
        Annu Rev Neurosci. 2007; 30: 259-288
        • Schultz W.
        Behavioral dopamine signals.
        Trends Neurosci. 2007; 30: 203-210
        • Stuber G.D.
        • Wightman R.M.
        • Carelli R.M.
        Extinction of cocaine self-administration reveals functionally and temporally distinct dopaminergic signals in the nucleus accumbens.
        Neuron. 2005; 46: 661-669
        • Forbes E.E.
        • Brown S.M.
        • Kimak M.
        • Manuck S.B.
        • Hariri A.R.
        Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity.
        Mol Psychiatry. 2009; 14: 60-70
        • Hill S.Y.
        • Zezza N.
        • Wipprecht G.
        • Xu J.
        • Neiswanger K.
        Linkage studies of D2 and D4 receptor genes and alcoholism.
        Am J Med Genet. 1999; 88: 676-685
        • Li T.
        • Xu K.
        • Deng H.
        • Cai G.
        • Liu J.
        • Liu X.
        • et al.
        Association analysis of the dopamine D4 gene exon III VNTR and heroin abuse in Chinese subjects.
        Mol Psychiatry. 1997; 2: 413-416
        • Yeung N.
        • Ralph J.
        • Nieuwenhuis S.
        Drink alcohol and dim the lights: The impact of cognitive deficits on medial frontal cortex function.
        Cogn Affect Behav Neurosci. 2007; 7: 347-355
        • Nieuwenhuis S.
        • Ridderinkhof K.R.
        • Talsma D.
        • Coles M.G.
        • Holroyd C.B.
        • Kok A.
        • van der Molen M.W.
        A computational account of altered error processing in older age: Dopamine and the error-related negativity.
        Cogn Affect Behav Neurosci. 2002; 2: 19-36
        • Eppinger B.
        • Kray J.
        • Mock B.
        • Mecklinger A.
        Better or worse than expected?.
        Neuropsychologia. 2008; 46: 521-539
        • Heldmann M.
        • Russeler J.
        • Münte T.F.
        Internal and external information in error processing.
        BMC Neurosci. 2008; 9: 33
        • Frank M.J.
        • Moustafa A.A.
        • Haughey H.M.
        • Curran T.
        • Hutchison K.E.
        Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning.
        Proc Natl Acad Sci U S A. 2007; 104: 16311-16316