Advertisement
Archival Report| Volume 65, ISSUE 4, P276-282, February 15, 2009

A Tractography Analysis of Two Deep Brain Stimulation White Matter Targets for Depression

Published:November 17, 2008DOI:https://doi.org/10.1016/j.biopsych.2008.09.021

      Background

      Deep brain stimulation (DBS) of the subcallosal cingulate white matter (SCCwm) or anterior limb of the internal capsule (ALIC) may be effective in treating depression. Connectivity patterns of these regions may inform on mechanisms of action for DBS of these targets.

      Methods

      Diffusion tensor imaging (DTI) and probabilistic tractography were performed in 13 nondepressed subjects to determine connectivity patterns of SCCwm and ALIC. Tract maps were generated for each target in each subject, and tract voxels were coded as being unique to either target or shared. Group level tract maps were generated by including only those voxels common to at least 10 of 13 (>75%) subjects.

      Results

      The two targets have distinct patterns of connectivity with regions of overlap. The SCCwm showed consistent ipsilateral connections to the medial frontal cortex, the full extent of the anterior and posterior cingulate, medial temporal lobe, dorsal medial thalamus, hypothalamus, nucleus accumbens, and the dorsal brainstem. The ALIC seed, in contrast, demonstrated widespread projections to frontal pole, medial temporal lobe, cerebellum, nucleus accumbens, thalamus, hypothalamus, and brainstem. Common to both targets, albeit through distinct white matter bundles, were connections to frontal pole, medial temporal lobe, nucleus accumbens, dorsal thalamus, and hypothalamus.

      Conclusions

      Connectivity patterns of these two DBS white matter targets suggest distinct neural networks with areas of overlap in regions implicated in depression and antidepressant response.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Marangell L.B.
        • Martinez M.
        • Jurdi R.A.
        • Zboyan H.
        Neurostimulation therapies in depression: A review of new modalities.
        Acta Psychiatr Scand. 2007; 116: 174-181
        • Malone D.A.
        • Dougherty D.D.
        • Rezai A.R.
        • Carpenter L.L.
        • Friehs G.M.
        • Eskander E.N.
        • et al.
        Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistent depression [published online ahead of print October 9].
        Biol Psychiatry. 2008;
        • Mayberg H.S.
        • Lozano A.M.
        • Voon V.
        • McNeely H.E.
        • Seminowicz D.
        • Hamani C.
        • et al.
        Deep brain stimulation for treatment-resistant depression.
        Neuron. 2005; 45: 651-660
        • Lozano A.M.
        • Mayberg H.S.
        • Giacobbe P.
        • Hamani C.
        • Craddock R.C.
        • Kennedy S.H.
        Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression.
        Biol Psychiatry. 2008; 64: 461-467
        • Greenberg B.D.
        • Malone D.A.
        • Friehs G.M.
        • Rezai A.R.
        • Kubu C.S.
        • Malloy P.F.
        • et al.
        Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder.
        Neuropsychopharmacology. 2006; 31: 2384-2393
        • Nuttin B.
        • Cosyns P.
        • Demeulemeester H.
        • Gybels J.
        • Meyerson B.
        Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder.
        Lancet. 1999; 354: 1526
        • Okun M.S.
        • Mann G.
        • Foote K.D.
        • Shapira N.A.
        • Bowers D.
        • Springer U.
        • et al.
        Deep brain stimulation in the internal capsule and nucleus accumbens region: Responses observed during active and sham programming.
        J Neurol Neurosurg Psychiatry. 2007; 78: 310-314
        • Jimenez F.
        • Velasco F.
        • Salin-Pascual R.
        • Hernandez J.A.
        • Velasco M.
        • Criales J.L.
        • et al.
        A patient with a resistant major depression disorder treated with deep brain stimulation in the inferior thalamic peduncle.
        Neurosurgery. 2005; 57: 585-593
        • Kosel M.
        • Sturm V.
        • Frick C.
        • Lenartz D.
        • Zeidler G.
        • Brodesser D.
        • et al.
        Mood improvement after deep brain stimulation of the internal globus pallidus for tardive dyskinesia in a patient suffering from major depression.
        J Psychiatr Res. 2007; 41: 801-803
        • Schlaepfer T.E.
        • Cohen M.X.
        • Frick C.
        • Kosel M.
        • Brodesser D.
        • Axmacher N.
        • et al.
        Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression.
        Neuropsychopharmacology. 2008; 33: 368-377
        • Mayberg H.S.
        Positron emission tomography imaging in depression: A neural systems perspective.
        Neuroimaging Clin N Am. 2003; 13: 805-815
        • Mayberg H.S.
        Defining neurocircuits in depression: Insight from functional neuroimaging studies of diverse treatments.
        Psychiatr Ann. 2006; 36: 259-268
        • Mayberg H.S.
        • Brannan S.K.
        • Mahurin R.K.
        • Jerabek P.A.
        • Brickman J.S.
        • Tekell J.L.
        • et al.
        Cingulate function in depression: A potential predictor of treatment response.
        Neuroreport. 1997; 8: 1057-1061
        • Mayberg H.S.
        Limbic-cortical dysregulation: A proposed model of depression.
        J Neuropsychiatry Clin Neurosci. 1997; 9: 471-481
        • Dougherty D.D.
        • Rauch S.L.
        Somatic therapies for treatment-resistant depression: New neurotherapeutic interventions.
        Psychiatr Clin North Am. 2007; 30: 31-37
        • Sakas D.E.
        • Panourias I.G.
        • Simpson B.A.
        An introduction to neural networks surgery, a field of neuromodulation which is based on advances in neural networks science and digitised brain imaging.
        Acta Neurochir (Wien). 2007; 97: 3-13
        • DeLong M.R.
        • Wichmann T.
        Circuits and circuit disorders of the basal ganglia.
        Arch Neurol. 2007; 64: 20-24
        • Appleby B.S.
        • Duggan P.S.
        • Regenberg A.
        • Rabins P.V.
        Psychiatric and neuropsychiatric adverse events associated with deep brain stimulation: A meta-analysis of ten years' experience.
        Mov Disord. 2007; 22: 1722-1728
        • Follett K.A.
        Comparison of pallidal and subthalamic deep brain stimulation for the treatment of levodopa-induced dyskinesias.
        Neurosurg Focus. 2004; 17: E3
        • Mayberg H.S.
        Defining neurocircuits in depression: Insights from functional neuroimaging studies of diverse treatments.
        Psychiatr Ann. 2006; 36: 258-266
        • Dougherty D.D.
        • Rauch S.L.
        Brain correlates of antidepressant treatment outcome from neuroimaging studies in depression.
        Psychiatr Clin North Am. 2007; 30: 91-103
        • Seminowicz D.A.
        • Mayberg H.S.
        • McIntosh A.R.
        • Goldapple K.
        • Kennedy S.
        • Segal Z.
        • et al.
        Limbic-frontal circuitry in major depression: A path modeling meta-analysis.
        Neuroimage. 2004; 22: 409-418
        • Haber S.N.
        • Kim K.S.
        • Mailly P.
        • Calzavara R.
        Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning.
        J Neurosci. 2006; 26: 8368-8376
        • Petrides M.
        • Pandya D.N.
        Efferent association pathways from the rostral prefrontal cortex in the macaque monkey.
        J Neurosci. 2007; 27: 11573-11586
        • Carmichael S.T.
        • Price J.L.
        Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys.
        J Comp Neurol. 1996; 371: 179-207
        • Price J.L.
        • Carmichael S.T.
        • Drevets W.C.
        Networks related to the orbital and medial prefrontal cortex: A substrate for emotional behavior?.
        Prog Brain Res. 1996; 107: 523-536
        • Carmichael S.T.
        • Price J.L.
        Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys.
        J Comp Neurol. 1995; 363: 615-641
        • Ongur D.
        • Ferry A.T.
        • Price J.L.
        Architectonic subdivision of the human orbital and medial prefrontal cortex.
        J Comp Neurol. 2003; 460: 425-449
        • Ongur D.
        • Price J.L.
        The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans.
        Cereb Cortex. 2000; 10: 206-219
        • Beaulieu C.
        • Allen P.S.
        Determinants of anisotropic water diffusion in nerves.
        Magn Reson Med. 1994; 31: 394-400
        • Behrens T.E.
        • Johansen-Berg H.
        • Woolrich M.W.
        • Smith S.M.
        • Wheeler-Kingshott C.A.
        • Boulby P.A.
        • et al.
        Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging.
        Nat Neurosci. 2003; 6: 750-757
        • Johansen-Berg H.
        • Behrens T.E.
        • Sillery E.
        • Ciccarelli O.
        • Thompson A.J.
        • Smith S.M.
        • et al.
        Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus.
        Cereb Cortex. 2005; 15: 31-39
        • Hadjipavlou G.
        • Dunckley P.
        • Behrens T.E.
        • Tracey I.
        Determining anatomical connectivities between cortical and brainstem pain processing regions in humans: A diffusion tensor imaging study in healthy controls.
        Pain. 2006; 123: 169-178
        • Sillery E.
        • Bittar R.G.
        • Robson M.D.
        • Behrens T.E.
        • Stein J.
        • Aziz T.Z.
        • et al.
        Connectivity of the human periventricular-periaqueductal gray region.
        J Neurosurg. 2005; 103: 1030-1034
        • Rushworth M.F.
        • Behrens T.E.
        • Johansen-Berg H.
        Connection patterns distinguish 3 regions of human parietal cortex.
        Cereb Cortex. 2006; 16: 1418-1430
        • Johansen-Berg H.
        • Behrens T.E.
        • Robson M.D.
        • Drobnjak I.
        • Rushworth M.F.
        • Brady J.M.
        • et al.
        Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex.
        Proc Natl Acad Sci U S A. 2004; 101: 13335-13340
        • Croxson P.L.
        • Johansen-Berg H.
        • Behrens T.E.
        • Robson M.D.
        • Pinsk M.A.
        • Gross C.G.
        • et al.
        Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography.
        J Neurosci. 2005; 25: 8854-8866
        • Anwander A.
        • Tittgemeyer M.
        • von Cramon D.Y.
        • Friederici A.D.
        • Knosche T.R.
        Connectivity-based parcellation of Broca's area.
        Cereb Cortex. 2007; 17: 816-825
        • Heiervang E.
        • Behrens T.E.
        • Mackay C.E.
        • Robson M.D.
        • Johansen-Berg H.
        Between session reproducibility and between subject variability of diffusion MR and tractography measures.
        Neuroimage. 2006; 33: 867-877
        • Stieltjes B.
        • Kaufmann W.E.
        • van Zijl P.C.
        • Fredericksen K.
        • Pearlson G.D.
        • Solaiyappan M.
        • et al.
        Diffusion tensor imaging and axonal tracking in the human brainstem.
        Neuroimage. 2001; 14: 723-735
        • Behrens T.E.
        • Johansen-Berg H.
        • Jbabdi S.
        • Rushworth M.F.
        • Woolrich M.W.
        Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?.
        Neuroimage. 2007; 34: 144-155
        • Johansen-Berg H.
        • Gutman D.A.
        • Behrens T.E.
        • Matthews P.M.
        • Rushworth M.F.
        • Katz E.
        • et al.
        Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression.
        Cereb Cortex. 2008; 18: 1374-1383
        • Smith S.M.
        • Jenkinson M.
        • Woolrich M.W.
        • Beckmann C.F.
        • Behrens T.E.
        • Johansen-Berg H.
        • et al.
        Advances in functional and structural MR image analysis and implementation as FSL.
        Neuroimage. 2004; 23: S208-S219
        • Behrens T.E.J.
        • Woolrich M.W.
        • Jenkinson M.
        • Johansen-Berg H.
        • Nunes R.G.
        • Clare S.
        • et al.
        Characterization and propagation of uncertainty in diffusion-weighted MR imaging.
        Magn Reson Med. 2003; 50: 1077-1088
        • Kennedy S.H.
        • Evans K.R.
        • Kruger S.
        • Mayberg H.S.
        • Meyer J.H.
        • McCann S.
        • et al.
        Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression.
        Am J Psychiatry. 2001; 158: 899-905
        • Smith S.M.
        Fast robust automated brain extraction.
        Hum Brain Mapp. 2002; 17: 143-155
        • Jenkinson M.
        • Smith S.M.
        Global optimisation for robust affine registration.
        Med Image Anal. 2001; 5: 143-156
        • Ciccarelli O.
        • Behrens T.E.
        • Altmann D.R.
        • Orrell R.W.
        • Howard R.S.
        • Johansen-Berg H.
        • et al.
        Probabilistic diffusion tractography: A potential tool to assess the rate of disease progression in amyotrophic lateral sclerosis.
        Brain. 2006; 129: 1859-1871
        • Tanis K.Q.
        • Newton S.S.
        • Duman R.S.
        Targeting neurotrophic/growth factor expression and signaling for antidepressant drug development.
        CNS Neurol Disord Drug Targets. 2007; 6: 151-160
        • Pittenger C.
        • Duman R.S.
        Stress, depression, and neuroplasticity: A convergence of mechanisms.
        Neuropsychopharmacology. 2008; 33: 88-109
        • Airan R.D.
        • Meltzer L.A.
        • Roy M.
        • Gong Y.
        • Chen H.
        • Deisseroth K.
        High-speed imaging reveals neurophysiological links to behavior in an animal model of depression.
        Science. 2007; 317: 819-823
        • Schlaepfer T.E.
        • Cohen M.X.
        • Frick C.
        • Kosel M.
        • Brodesser D.
        • Axmacher N.
        • et al.
        Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression.
        Neuropsychopharmacology. 2008; 33: 368-377
        • Schmahmann J.D.
        • Pandya D.N.
        Fiber Pathways of the Brain.
        New York: Oxford University Press, 2006
        • Vogt B.A.
        • Pandya D.N.
        Cingulate cortex of the rhesus monkey: II.
        J Comp Neurol. 1987; 262: 271-289
        • Barbas H.
        • Saha S.
        • Rempel-Clower N.
        • Ghashghaei T.
        Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression.
        BMC Neurosci. 2003; 4: 25-37
        • Freedman L.J.
        • Insel T.R.
        • Smith Y.
        Subcortical projections of area 25 (subgenual cortex) of the macaque monkey.
        J Comp Neurol. 2000; 421: 172-188
        • Ongur D.
        • An X.
        • Price J.L.
        Prefrontal cortical projections to the hypothalamus in macaque monkeys.
        J Comp Neurol. 1998; 401: 480-505
        • Kunishio K.
        • Haber S.N.
        Primate cingulostriatal projection: Limbic striatal versus sensorimotor striatal input.
        J Comp Neurol. 1994; 350: 337-356
        • Ferry A.T.
        • Ongur D.
        • An X.
        • Price J.L.
        Prefrontal cortical projections to the striatum in macaque monkeys: Evidence for an organization related to prefrontal networks.
        J Comp Neurol. 2000; 425: 447-470
        • Haber S.N.
        • Kunishio K.
        • Mizobuchi M.
        • Lynd-Balta E.
        The orbital and medial prefrontal circuit through the primate basal ganglia.
        J Neurosci. 1995; 15: 4851-4867
        • An X.
        • Bandler R.
        • Ongur D.
        • Price J.L.
        Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys.
        J Comp Neurol. 1998; 401: 455-479
        • McIntyre C.C.
        • Miocinovic S.
        • Butson C.R.
        Computational analysis of deep brain stimulation.
        Expert Rev Med Devices. 2007; 4: 615-622
        • Stieltjes B.
        • Kaufmann W.E.
        • van Zijl P.C.
        • Fredericksen K.
        • Pearlson G.D.
        • Solaiyappan M.
        • et al.
        Diffusion tensor imaging and axonal tracking in the human brainstem.
        Neuroimage. 2001; 14: 723-735
        • Dyrby T.B.
        • Sogaard L.V.
        • Parker G.J.
        • Alexander D.C.
        • Lind N.M.
        • Baare W.F.
        • et al.
        Validation of in vitro probabilistic tractography.
        Neuroimage. 2007; 37: 1267-1277
        • Dauguet J.
        • Peled S.
        • Berezovskii V.
        • Delzescaux T.
        • Warfield S.K.
        • Born R.
        • et al.
        Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain.
        Neuroimage. 2007; 37: 530-538
        • Pierpaoli C.
        • Barnett A.
        • Pajevic S.
        • Chen R.
        • Penix L.R.
        • Virta A.
        • et al.
        Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture.
        Neuroimage. 2001; 13: 1174-1185