Advertisement
Commentary| Volume 64, ISSUE 10, P833-834, November 15, 2008

Imaging Microglial Activation in Alzheimer's Disease: What Does It Mean?

  • Christopher H. van Dyck
    Correspondence
    Address reprint requests to Christopher H. van Dyck, M.D., Alzheimer's Disease Research Unit, Department of Psychiatry, Yale University School of Medicine, One Church Street, Suite 600, New Haven, CT 06510
    Affiliations
    Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, Connecticut
    Search for articles by this author
      The inflammatory hypothesis of Alzheimer's disease (AD) arose from a combination of epidemiological and neurobiological evidence. The finding of an inverse association between AD onset and prior use of anti-inflammatory drugs in co-twin control studies suggested the possibility that exposure to these drugs might prevent or delay the initial onset of AD symptoms (
      • Breitner J.C.
      • Gau B.A.
      • Welsh K.A.
      • Plassman B.L.
      • McDonald W.M.
      • Helms M.J.
      • et al.
      Inverse association of anti-inflammatory treatments and Alzheimer's disease: Initial results of a co-twin control study.
      ). The discovery of a range of inflammatory processes in the AD brain—from activated microglia to cytokines and the complement cascade—further supported the notion that anti-inflammatory treatment might slow the progression of AD, even after onset (
      • Aisen P.S.
      • Davis K.L.
      Inflammatory mechanisms in Alzheimer's disease: implications for therapy.
      ,
      • Rogers J.
      • Webster S.
      • Lue L.F.
      • Brachova L.
      • Civin W.H.
      • Emmerling M.
      • et al.
      Inflammation and Alzheimer's disease pathogenesis.
      ). During the past 10 years this optimistic hypothesis has been sobered by a series of negative randomized controlled trials of anti-inflammatory agents, including a glucocorticoid therapy (
      • Aisen P.S.
      • Davis K.L.
      • Berg J.D.
      • Schafer K.
      • Campbell K.
      • Thomas R.G.
      • et al.
      A randomized controlled trial of prednisone in Alzheimer's disease Alzheimer's Disease Cooperative Study.
      ), nonsteroidal anti-inflammatory drugs (
      • Aisen P.S.
      • Schafer K.A.
      • Grundman M.
      • Pfeiffer E.
      • Sano M.
      • Davis K.L.
      • et al.
      Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: A randomized controlled trial.
      ,
      • Thal L.J.
      • Ferris S.H.
      • Kirby L.
      • Block G.A.
      • Lines C.R.
      • Yuen E.
      • et al.
      A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment.
      ,
      • Lyketsos C.G.
      • Breitner J.C.
      • Green R.C.
      • Martin B.K.
      • Meinert C.
      • et al.
      ADAPT Research Group
      Naproxen and celecoxib do not prevent AD in early results from a randomized controlled trial.
      ,
      • Gómez-Isla T.
      • Blesa R.
      • Boada M.
      • Clarimón J.
      • Del Ser T.
      • Domenech G.
      • et al.
      A randomized, double-blind, placebo controlled-trial of triflusal in mild cognitive impairment: The TRIMCI study.
      ), and hydroxychloroquine (
      • Van Gool W.A.
      • Weinstein H.C.
      • Scheltens P.
      • Walstra G.J.
      Effect of hydroxychloroquine on progression of dementia in early Alzheimer's disease: An 18-month randomised, double-blind, placebo-controlled study.
      ) for AD or the prodromal condition of mild cognitive impairment (MCI). Despite the failure of these trials, interest in novel anti-inflammatory strategies for AD treatment continues (
      • Tobinick E.
      • Gross H.
      • Weinberger A.
      • Cohen H.
      TNF-alpha modulation for treatment of Alzheimer's disease: A 6-month pilot study.
      ).
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Breitner J.C.
        • Gau B.A.
        • Welsh K.A.
        • Plassman B.L.
        • McDonald W.M.
        • Helms M.J.
        • et al.
        Inverse association of anti-inflammatory treatments and Alzheimer's disease: Initial results of a co-twin control study.
        Neurology. 1994; 44: 227-232
        • Aisen P.S.
        • Davis K.L.
        Inflammatory mechanisms in Alzheimer's disease: implications for therapy.
        Am J Psychiatry. 1994; 151: 1105-1113
        • Rogers J.
        • Webster S.
        • Lue L.F.
        • Brachova L.
        • Civin W.H.
        • Emmerling M.
        • et al.
        Inflammation and Alzheimer's disease pathogenesis.
        Neurobiol Aging. 1996; 17: 681-686
        • Aisen P.S.
        • Davis K.L.
        • Berg J.D.
        • Schafer K.
        • Campbell K.
        • Thomas R.G.
        • et al.
        A randomized controlled trial of prednisone in Alzheimer's disease.
        Neurology. 2000; 54: 588-593
        • Aisen P.S.
        • Schafer K.A.
        • Grundman M.
        • Pfeiffer E.
        • Sano M.
        • Davis K.L.
        • et al.
        Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: A randomized controlled trial.
        JAMA. 2003; 289: 2819-2826
        • Thal L.J.
        • Ferris S.H.
        • Kirby L.
        • Block G.A.
        • Lines C.R.
        • Yuen E.
        • et al.
        A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment.
        Neuropsychopharmacology. 2005; 30: 1204-1215
        • Lyketsos C.G.
        • Breitner J.C.
        • Green R.C.
        • Martin B.K.
        • Meinert C.
        • et al.
        • ADAPT Research Group
        Naproxen and celecoxib do not prevent AD in early results from a randomized controlled trial.
        Neurology. 2007; 68: 1800-1808
        • Gómez-Isla T.
        • Blesa R.
        • Boada M.
        • Clarimón J.
        • Del Ser T.
        • Domenech G.
        • et al.
        A randomized, double-blind, placebo controlled-trial of triflusal in mild cognitive impairment: The TRIMCI study.
        Alzheimer Dis Assoc Disord. 2008; 22: 21-29
        • Van Gool W.A.
        • Weinstein H.C.
        • Scheltens P.
        • Walstra G.J.
        Effect of hydroxychloroquine on progression of dementia in early Alzheimer's disease: An 18-month randomised, double-blind, placebo-controlled study.
        Lancet. 2001; 358: 455-460
        • Tobinick E.
        • Gross H.
        • Weinberger A.
        • Cohen H.
        TNF-alpha modulation for treatment of Alzheimer's disease: A 6-month pilot study.
        MedGenMed. 2006; : 8
        • van Dyck C.H.
        Neuroimaging in Alzheimer's disease: Relevance for treatment.
        Current Psychiatry Reports. 2001; 3: 13-19
        • Groom G.N.
        • Junck L.
        • Foster N.L.
        • Frey K.A.
        • Kuhl D.
        PET of peripheral benzodiazepine binding sites in the microgliosis of Alzheimer's disease.
        J Nucl Med. 1995; 36: 2207-2210
        • Cagnin A.
        • Brooks D.J.
        • Kennedy A.M.
        • Gunn R.N.
        • Myers R.
        • Turkheimer F.E.
        • et al.
        In-vivo measurement of activated microglia in dementia.
        Lancet. 2001; 358: 461-467
        • Versijpt J.J.
        • Dumont F.
        • Van Laere K.J.
        • Decoo D.
        • Santens P.
        • Audenaert K.
        • et al.
        Assessment of neuroinflammation and microglial activation in Alzheimer's disease with radiolabelled PK11195 and single photon emission computed tomography.
        Eur Neurol. 2003; 50: 39-47
        • Venneti S.
        • Lopresti B.J.
        • Wang G.
        • Slagel S.L.
        • Mason N.S.
        • Mathis C.A.
        • et al.
        A comparison of the high-affinity peripheral benzodiazepine receptor ligands DAA1106 and (R)-PK11195 in rat models of neuroinflammation: Implications for PET imaging of microglial activation.
        J Neurochem. 2007; 102: 2118-2131
        • Venneti S.
        • Lopresti B.J.
        • Wang G.
        • Hamilton R.L.
        • Mathis C.A.
        • Klunk W.E.
        • et al.
        PK11195 labels activated microglia in Alzheimer's disease and in vivo in a mouse model using PET [published online ahead of print January 4].
        Neurobiol Aging. 2008;
        • Tan J.
        • Town T.
        • Paris D.
        • Mori T.
        • Suo Z.
        • Crawford F.
        • et al.
        Microglial activation resulting from CD40-CD40L interaction after beta-amyloid stimulation.
        Science. 1999; 286: 2352-2355
        • Bianca V.D.
        • Dusi S.
        • Bianchini E.
        • Dal Prà I.
        • Rossi F.
        Beta-amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils.
        J Biol Chem. 1999; 274: 15493-15499
        • Frackowiak J.
        • Wisniewski H.M.
        • Wegiel J.
        • Merz G.S.
        • Iqbal K.
        • Wang K.C.
        Ultrastructure of the microglia that phagocytose amyloid and the microglia that produce beta-amyloid fibrils.
        Acta Neuropathol. 1992; 84: 225-233
        • el Hachimi K.H.
        • Foncin J.F.
        Do microglial cells phagocyte the beta/A4-amyloid senile plaque core of Alzheimer disease?.
        C R Acad Sci III. 1994; 317: 445-451
        • Morgan D.
        • Gordon M.N.
        • Tan J.
        • Wilcock D.
        • Rojiani A.M.
        Dynamic complexity of the microglial activation response in transgenic models of amyloid deposition: Implications for Alzheimer therapeutics.
        J Neuropathol Exp Neurol. 2005; 64: 743-753