Advertisement
Archival Report| Volume 64, ISSUE 12, P1077-1087, December 15, 2008

Download started.

Ok

Insulin, IGF-1, and Muscarinic Agonists Modulate Schizophrenia-associated Genes in Human Neuroblastoma Cells

      Background

      Genes associated with energy metabolism are decreased in schizophrenia brain and human and rodent diabetic skeletal muscle. These and other similarities between diabetes and schizophrenia suggest that an insulin signaling deficit may underlie schizophrenia. We determined with human SH-SY5Y neuroblastoma and astrocyte cell lines whether insulin or other molecules could modulate genes opposite to their change reported in schizophrenia brain.

      Methods

      Both cell lines were treated with insulin, insulin-like growth factor (IGF)-1, IGF-2, or brain-derived neurotrophic factor (BDNF). Genes whose expression was found with microarrays to be changed by insulin in a reciprocal manner to their change in schizophrenia were used in a 16-gene miniarray to identify small molecules that might mimic insulin.

      Results

      Insulin phosphorylated its receptor in the neuroblastoma cells but not in astrocytes and, like IGF-1, increased ERK1/2 and Akt phosphorylation. Insulin and IGF-1 increased the expression of genes decreased in schizophrenia, including those involved in mitochondrial functions, glucose and energy metabolism, hydrogen ion transport, and synaptic function. These gene effects were confirmed and shown to be dose related with the 16-gene miniarrays. Most of 1940 pharmacologically unique compounds failed to alter gene expression, with the exception of muscarinic agonists, which mimicked insulin and IGF-1, and which were blocked by the muscarinic antagonists atropine and telenzepine.

      Conclusions

      Stimulation of muscarinic and insulin/IGF-1 receptors alter genes associated with metabolic and synaptic functions in a manner reciprocal to their changes in schizophrenia. Pharmacologic activation of these receptors may normalize genomic alterations in schizophrenia and better address root causes of this disease.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mirnics K.
        • Middleton F.A.
        • Marquez A.
        • Lewis D.A.
        • Levitt P.
        Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex.
        Neuron. 2000; 28: 53-67
        • Middleton F.A.
        • Mirnics K.
        • Pierri J.N.
        • Lewis D.A.
        • Levitt P.
        Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia.
        J Neurosci. 2002; 22: 2718-2729
        • Bahn S.
        • Augood S.J.
        • Ryan M.
        • Standaert D.G.
        • Starkey M.
        • Emson P.C.
        Gene expression profiling in the post-mortem human brain—no cause for dismay.
        J Chem Neuroanat. 2001; 22: 79-94
        • Altar C.A.
        • Jurata L.W.
        • Charles V.
        • Lemire A.
        • Liu P.
        • Bukhman Y.
        • et al.
        Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts.
        Biol Psychiatry. 2005; 58: 85-96
        • Prabakaran S.
        • Swatton J.E.
        • Ryan M.M.
        • Huffaker S.J.
        • Huang J.T.
        • Griffin J.L.
        • et al.
        Mitochondrial dysfunction in schizophrenia: Evidence for compromised brain metabolism and oxidative stress.
        Mol Psychiatry. 2004; 9 (643): 684-697
        • Vawter M.P.
        • Shannon Weickert C.
        • Ferran E.
        • Matsumoto M.
        • Overman K.
        • et al.
        Gene expression of metabolic enzymes and a protease inhibitor in the prefrontal cortex are decreased in schizophrenia.
        Neurochem Res. 2004; 29: 1245-1255
        • Prince J.A.
        • Harro J.
        • Blennow K.
        • Gottfries C.G.
        • Oreland L.
        Putamen mitochondrial energy metabolism is highly correlated to emotional and intellectual impairment in schizophrenics.
        Neuropsychopharmacology. 2000; 22: 284-292
        • Maurer I.
        • Zierz S.
        • Moller H.
        Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia.
        Schizophr Res. 2001; 48: 125-136
        • Ben-Shachar D.
        • Laifenfeld D.
        Mitochondria, synaptic plasticity, and schizophrenia.
        Int Rev Neurobiol. 2004; 59: 273-296
        • Buchsbaum M.S.
        • Shihabuddin L.
        • Hazlett E.A.
        • Schroder J.
        • Haznedar M.M.
        • Powchik P.
        • et al.
        Kraepelinian and non-Kraepelinian schizophrenia subgroup differences in cerebral metabolic rate.
        Schizophr Res. 2002; 55: 25-40
        • Kung L.
        • Roberts R.C.
        Mitochondrial pathology in human schizophrenic striatum: A postmortem ultrastructural study.
        Synapse. 1999; 31: 67-75
        • Uranova N.
        • Orlovskaya D.
        • Vikhreva O.
        • Zimina I.
        • Kolomeets N.
        • Vostrikov V.
        • et al.
        Electron microscopy of oligodendroglia in severe mental illness.
        Brain Res Bull. 2001; 55: 597-610
        • Yechoor V.K.
        • Patti M.E.
        • Saccone R.
        • Kahn C.R.
        Coordinated patterns of gene expression for substrate and energy metabolism in skeletal muscle of diabetic mice.
        Proc Natl Acad Sci U S A. 2002; 99: 10587-10592
        • Rome S.
        • Clement K.
        • Rabasa-Lhoret R.
        • Loizon E.
        • Poitou C.
        • Barsh G.S.
        • et al.
        Microarray profiling of human skeletal muscle reveals that insulin regulates approximately 800 genes during a hyperinsulinemic clamp.
        J Biol Chem. 2003; 278: 18063-18068
        • Arai T.
        • Nakamura M.
        • Magori E.
        • Fukuda H.
        • Sako T.
        Decrease in malate dehydrogenase activities in peripheral leucocytes of type 1 diabetic dogs.
        Res Vet Sci. 2003; 74: 183-185
        • Heath M.M.
        • Rixon K.C.
        • Harding J.J.
        Glycation-induced inactivation of malate dehydrogenase protection by aspirin and a lens molecular chaperone, alpha-crystallin.
        Biochim Biophys Acta. 1996; 1315: 176-184
        • Seema P.V.
        • Sudha B.
        • Padayatti P.S.
        • Abraham A.
        • Raghu K.G.
        • Paulose C.S.
        Kinetic studies of purified malate dehydrogenase in liver of streptozotocin-diabetic rats and the effect of leaf extract of Aegle marmelose (L.) Correa ex Roxb.
        Indian J Exp Biol. 1996; 34: 600-602
        • Kazmi S.M.
        • Mayanil C.S.
        • Baquer N.Z.
        Malate-aspartate shuttle enzymes in rat brain regions, liver and heart during alloxan diabetes and insulin replacement.
        Enzyme. 1985; 34: 98-106
        • Zhao Z.
        • Ksiezak-Reding H.
        • Riggio S.
        • Haroutunian V.
        • Pasinetti G.M.
        Insulin receptor deficits in schizophrenia and in cellular and animal models of insulin receptor dysfunction.
        Schizophr Res. 2006; 84: 1-14
        • Gough S.C.
        • O'Donovan M.C.
        Clustering of metabolic comorbidity in schizophrenia: A genetic contribution?.
        J Psychopharmacol. 2005; 19: 47-55
        • Holt R.I.
        • Bushe C.
        • Citrome L.
        Diabetes and schizophrenia 2005: Are we any closer to understanding the link?.
        J Psychopharmacol. 2005; 19: 56-65
        • Iwamoto K.
        • Kakiuchi C.
        • Bundo M.
        • Ikeda K.
        • Kato T.
        Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders.
        Mol Psychiatry. 2004; 9: 406-416
        • Holmes E.
        • Tsang T.M.
        • Huang J.T.
        • Leweke F.M.
        • Koethe D.
        • Gerth C.W.
        • et al.
        Metabolic profiling of CSF: Evidence that early intervention may impact on disease progression and outcome in schizophrenia.
        PLoS Med. 2006; 3: e327
        • Johnston N.L.
        • Cervenak J.
        • Shore A.D.
        • Torrey E.F.
        • Yolken R.H.
        • Cerevnak J.
        Multivariate analysis of RNA levels from postmortem human brains as measured by three different methods of RT-PCR.
        J Neurosci Methods. 1997; 77: 83-92
        • Torrey E.F.
        • Webster M.
        • Knable M.
        • Johnston N.
        • Yolken R.H.
        The Stanley Foundation brain collection and neuropathology consortium.
        Schizophr Res. 2000; 44: 151-155
        • Pender C.
        • Goldfine I.D.
        • Manchem V.P.
        • Evans J.L.
        • Spevak W.R.
        • Shi S.
        • et al.
        Regulation of insulin receptor function by a small molecule insulin receptor activator.
        J Biol Chem. 2002; 277: 43565-43571
        • Ogden C.A.
        • Rich M.E.
        • Schork N.J.
        • Paulus M.P.
        • Geyer M.A.
        • Lohr J.B.
        • et al.
        Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: An expanded convergent functional genomics approach.
        Mol Psychiatry. 2004; 9: 1007-1029
        • Le-Niculescu H.
        • Balaraman Y.
        • Patel S.
        • Tan J.
        • Sidhu K.
        • Jerome R.E.
        • et al.
        Towards understanding the schizophrenia code: An expanded convergent functional genomics approach.
        Am J Med Genet B Neuropsychiatr Genet. 2007; 144: 129-158
        • Martel R.R.
        • Botros I.W.
        • Rounseville M.P.
        • Hinton J.P.
        • Staples R.R.
        • Morales D.A.
        • et al.
        Multiplexed screening assay for mRNA combining nuclease protection with luminescent array detection.
        Assay Drug Dev Technol. 2002; 1: 61-71
        • Kukkonen J.
        • Ojala P.
        • Nasman J.
        • Hamalainen H.
        • Heikkila J.
        • Akerman K.E.
        Muscarinic receptor subtypes in human neuroblastoma cell lines SH-SY5Y and IMR-32 as determined by receptor binding, Ca++ mobilization and northern blotting.
        J Pharmacol Exp Ther. 1992; 263: 1487-1493
        • Kato T.
        • Kato N.
        Mitochondrial dysfunction in bipolar disorder.
        Bipolar Disord. 2000; 2: 180-190
        • Novikova S.I.
        • He F.
        • Cutrufello N.J.
        • Lidow M.S.
        Identification of protein biomarkers for schizophrenia and bipolar disorder in the postmortem prefrontal cortex using SELDI-TOF-MS ProteinChip profiling combined with MALDI-TOF-PSD-MS analysis.
        Neurobiol Dis. 2006; 23: 61-76
        • Dager S.R.
        • Friedman S.D.
        • Parow A.
        • Demopulos C.
        • Stoll A.L.
        • Lyoo I.K.
        • et al.
        Brain metabolic alterations in medication-free patients with bipolar disorder.
        Arch Gen Psychiatry. 2004; 61: 450-458
        • Rodd Z.A.
        • Bertsch B.A.
        • Strother W.N.
        • Le-Niculescu H.
        • Balaraman Y.
        • Hayden E.
        • et al.
        Candidate genes, pathways and mechanisms for alcoholism: An expanded convergent functional genomics approach.
        Pharmacogenomics J. 2007; 7: 222-256
        • Martin D.M.
        • Feldman E.L.
        Regulation of insulin-like growth factor-IL expression and its role in autocrine growth of human neuroblastoma cells.
        J Cell Physiol. 1993; 155: 290-300
        • Meghani M.A.
        • Martin D.M.
        • Singleton J.R.
        • Feldman E.L.
        Effects of serum and insulin-like growth factors on human neuroblastoma cell growth.
        Regul Pept. 1993; 48: 217-224
        • Recio-Pinto E.
        • Ishii D.N.
        Insulin and insulinlike growth factor receptors regulating neurite formation in cultured human neuroblastoma cells.
        J Neurosci Res. 1988; 19: 312-320
        • Cheng C.M.
        • Reinhardt R.R.
        • Lee W.H.
        • Joncas G.
        • Patel S.C.
        • Bondy C.A.
        Insulin-like growth factor 1 regulates developing brain glucose metabolism.
        Proc Natl Acad Sci U S A. 2000; 97: 10236-10241
        • Carro E.
        • Nunez A.
        • Busiguina S.
        • Torres-Aleman I.
        Circulating insulin-like growth factor I mediates effects of exercise on the brain.
        J Neurosci. 2000; 20: 2926-2933
        • Marks J.L.
        • Porte Jr, D.
        • Baskin D.G.
        Localization of type I insulin-like growth factor receptor messenger RNA in the adult rat brain by in situ hybridization.
        Mol Endocrinol. 1991; 5: 1158-1168
        • Zhang L.
        • Jope R.S.
        Muscarinic M3 and epidermal growth factor receptors activate mutually inhibitory signaling cascades in human neuroblastoma SH-SY5Y cells.
        Biochem Biophys Res Commun. 1999; 255: 774-777
        • Lavenius E.
        • Parrow V.
        • Nanberg E.
        • Pahlman S.
        Basic FGF and IGF-I promote differentiation of human SH-SY5Y neuroblastoma cells in culture.
        Growth Factors. 1994; 10: 29-39
        • Fagerstrom S.
        • Pahlman S.
        • Gestblom C.
        • Nanberg E.
        Protein kinase C-epsilon is implicated in neurite outgrowth in differentiating human neuroblastoma cells.
        Cell Growth Differ. 1996; 7: 775-785
        • Recio-Pinto E.
        • Ishii D.N.
        Effects of insulin, insulin-like growth factor-II and nerve growth factor on neurite outgrowth in cultured human neuroblastoma cells.
        Brain Res. 1984; 302: 323-334
        • Mootha V.K.
        • Lindgren C.M.
        • Eriksson K.F.
        • Subramanian A.
        • Sihag S.
        • Lehar J.
        • et al.
        PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes.
        Nat Genet. 2003; 34: 267-273
        • Sreekumar R.
        • Halvatsiotis P.
        • Schimke J.C.
        • Nair K.S.
        Gene expression profile in skeletal muscle of type 2 diabetes and the effect of insulin treatment.
        Diabetes. 2002; 51: 1913-1920
        • Magarinos A.M.
        • McEwen B.S.
        Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress.
        Proc Natl Acad Sci U S A. 2000; 97: 11056-11061
        • Devaskar S.U.
        • Giddings S.J.
        • Rajakumar P.A.
        • Carnaghi L.R.
        • Menon R.K.
        • Zahm D.S.
        Insulin gene expression and insulin synthesis in mammalian neuronal cells.
        J Biol Chem. 1994; 269: 8445-8454
        • Gerozissis K.
        Brain insulin: Regulation, mechanisms of action and functions.
        Cell Mol Neurobiol. 2003; 23: 1-25
        • Werther G.A.
        • Abate M.
        • Hogg A.
        • Cheesman H.
        • Oldfield B.
        • Hards D.
        • et al.
        Localization of insulin-like growth factor-I mRNA in rat brain by in situ hybridization—relationship to IGF-I receptors.
        Mol Endocrinol. 1990; 4: 773-778
        • Bohannon N.J.
        • Corp E.S.
        • Wilcox B.J.
        • Figlewicz D.P.
        • Dorsa D.M.
        • Baskin D.G.
        Localization of binding sites for insulin-like growth factor-I (IGF-I) in the rat brain by quantitative autoradiography.
        Brain Res. 1988; 444: 205-213
        • Hill J.M.
        • Lesniak M.A.
        • Pert C.B.
        • Roth J.
        Autoradiographic localization of insulin receptors in rat brain: Prominence in olfactory and limbic areas.
        Neuroscience. 1986; 17: 1127-1138
        • Marks J.L.
        • Porte Jr, D.
        • Stahl W.L.
        • Baskin D.G.
        Localization of insulin receptor mRNA in rat brain by in situ hybridization.
        Endocrinology. 1990; 127: 3234-3236
        • Zhao W.
        • Chen H.
        • Xu H.
        • Moore E.
        • Meiri N.
        • Quon M.J.
        • et al.
        Brain insulin receptors and spatial memory.
        J Biol Chem. 1999; 274: 34893-34902
        • Zhao W.Q.
        • Chen H.
        • Quon M.J.
        • Alkon D.L.
        Insulin and the insulin receptor in experimental models of learning and memory.
        Eur J Pharmacol. 2004; 490: 71-81
        • Emamian E.S.
        • Hall D.
        • Birnbaum M.J.
        • Karayiorgou M.
        • Gogos J.A.
        Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia.
        Nat Genet. 2004; 36: 131-137
        • Schwab S.G.
        • Hoefgen B.
        • Hanses C.
        • Hassenbach M.B.
        • Albus M.
        • Lerer B.
        • et al.
        Further evidence for association of variants in the AKT1 gene with schizophrenia in a sample of European sib-pair families.
        Biol Psychiatry. 2005; 58: 446-450
        • Cui Q.L.
        • Fogle E.
        • Almazan G.
        Muscarinic acetylcholine receptors mediate oligodendrocyte progenitor survival through Src-like tyrosine kinases and PI3K/Akt pathways.
        Neurochem Int. 2006; 48: 383-393
        • De Sarno P.
        • Bijur G.N.
        • Zmijewska A.A.
        • Li X.
        • Jope R.S.
        In vivo regulation of GSK3 phosphorylation by cholinergic and NMDA receptors.
        Neurobiol Aging. 2006; 27: 413-422
        • Stanhope K.J.
        • Mirza N.R.
        • Bickerdike M.J.
        • Bright J.L.
        • Harrington N.R.
        • Hesselink M.B.
        • et al.
        The muscarinic receptor agonist xanomeline has an antipsychotic-like profile in the rat.
        J Pharmacol Exp Ther. 2001; 299: 782-792
        • Andersen M.B.
        • Fink-Jensen A.
        • Peacock L.
        • Gerlach J.
        • Bymaster F.
        • Lundbaek J.A.
        • et al.
        The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in Cebus apella monkeys.
        Neuropsychopharmacology. 2003; 28: 1168-1175
        • Bymaster F.P.
        • Felder C.
        • Ahmed S.
        • McKinzie D.
        Muscarinic receptors as a target for drugs treating schizophrenia.
        Curr Drug Targets CNS Neurol Disord. 2002; 1: 163-181
        • Bodick N.C.
        • Offen W.W.
        • Levey A.I.
        • Cutler N.R.
        • Gauthier S.G.
        • Satlin A.
        • et al.
        Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease.
        Arch Neurol. 1997; 54: 465-473
        • Dean B.
        • Crook J.M.
        • Opeskin K.
        • Hill C.
        • Keks N.
        • Copolov D.L.
        The density of muscarinic M1 receptors is decreased in the caudate-putamen of subjects with schizophrenia.
        Mol Psychiatry. 1996; 1: 54-58
        • Scarr E.
        • Sundram S.
        • Keriakous D.
        • Dean B.
        Altered hippocampal muscarinic M4, but not M1, receptor expression from subjects with schizophrenia.
        Biol Psychiatry. 2007; 61: 1161-1170
        • Raedler T.J.
        • Knable M.B.
        • Jones D.W.
        • Urbina R.A.
        • Egan M.F.
        • Weinberger D.R.
        Central muscarinic acetylcholine receptor availability in patients treated with clozapine.
        Neuropsychopharmacology. 2003; 28 (1531157)
        • Ichikawa J.
        • Chung Y.C.
        • Li Z.
        • Dai J.
        • Meltzer H.Y.
        Cholinergic modulation of basal and amphetamine-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens.
        Brain Res. 2002; 958: 176-184
        • Li J.Z.
        • Vawter M.P.
        • Walsh D.M.
        • Tomita H.
        • Evans S.J.
        • Choudary P.V.
        • et al.
        Systematic changes in gene expression in postmortem human brains associated with tissue pH and terminal medical conditions.
        Hum Mol Genet. 2004; 13: 609-616
        • Li Z.
        • Huang M.
        • Ichikawa J.
        • Dai J.
        • Meltzer H.Y.
        N-desmethylclozapine, a major metabolite of clozapine, increases cortical acetylcholine and dopamine release in vivo via stimulation of M1 muscarinic receptors.
        Neuropsychopharmacology. 2005; 30: 1986-1995
        • Perry K.W.
        • Nisenbaum L.K.
        • George C.A.
        • Shannon H.E.
        • Felder C.C.
        • Bymaster F.P.
        The muscarinic agonist xanomeline increases monoamine release and immediate early gene expression in the rat prefrontal cortex.
        Biol Psychiatry. 2001; 49: 716-725
        • Davies M.A.
        • Compton-Toth B.A.
        • Hufeisen S.J.
        • Meltzer H.Y.
        • Roth B.L.
        The highly efficacious actions of N-desmethylclozapine at muscarinic receptors are unique and not a common property of either typical or atypical antipsychotic drugs: is M1 agonism a pre-requisite for mimicking clozapine's actions?.
        Psychopharmacology (Berl). 2005; 178: 451-460
        • Fink-Jensen A.
        • Kristensen P.
        • Shannon H.E.
        • Calligaro D.O.
        • Delapp N.W.
        • Whitesitt C.
        • et al.
        Muscarinic agonists exhibit functional dopamine antagonism in unilaterally 6-OHDA lesioned rats.
        Neuroreport. 1998; 9: 3481-3486
        • Gerber D.J.
        • Sotnikova T.D.
        • Gainetdinov R.R.
        • Huang S.Y.
        • Caron M.G.
        • Tonegawa S.
        Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice.
        Proc Natl Acad Sci U S A. 2001; 98: 15312-15317
        • Johnson D.E.
        • Yamazaki H.
        • Ward K.M.
        • Schmidt A.W.
        • Lebel W.S.
        • Treadway J.L.
        • et al.
        Inhibitory effects of antipsychotics on carbachol-enhanced insulin secretion from perifused rat islets: Role of muscarinic antagonism in antipsychotic-induced diabetes and hyperglycemia.
        Diabetes. 2005; 54: 1552-1558
        • Lautt W.W.
        A new paradigm for diabetes and obesity: The hepatic insulin sensitizing substance (HISS) hypothesis.
        J Pharmacol Sci. 2004; 95: 9-17
        • Cohn T.A.
        • Remington G.
        • Kameh H.
        Hyperinsulinemia in psychiatric patients treated with olanzapine.
        J Clin Psychiatry. 2002; 63: 75-76
        • Bushe C.
        • Holt R.
        Prevalence of diabetes and impaired glucose tolerance in patients with schizophrenia.
        Br J Psychiatry Suppl. 2004; 47: S67-S71
        • Spelman L.M.
        • Walsh P.I.
        • Sharifi N.
        • Collins P.
        • Thakore J.H.
        Impaired glucose tolerance in first-episode drug-naive patients with schizophrenia.
        Diabet Med. 2007; 24: 481-485