Advertisement
Archival Report| Volume 64, ISSUE 10, P856-862, November 15, 2008

Download started.

Ok

Impact of the Brain-Derived Neurotrophic Factor Val66Met Polymorphism on Levels of Hippocampal N-Acetyl-Aspartate Assessed by Magnetic Resonance Spectroscopic Imaging at 3 Tesla

  • Alexa J. Stern
    Affiliations
    Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health (NIMH) Intramural Research Program, National Institutes of Health (NIH), Bethesda, Maryland
    Search for articles by this author
  • Antonina A. Savostyanova
    Affiliations
    Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health (NIMH) Intramural Research Program, National Institutes of Health (NIH), Bethesda, Maryland
    Search for articles by this author
  • Aaron Goldman
    Affiliations
    Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health (NIMH) Intramural Research Program, National Institutes of Health (NIH), Bethesda, Maryland
    Search for articles by this author
  • Alan S. Barnett
    Affiliations
    Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health (NIMH) Intramural Research Program, National Institutes of Health (NIH), Bethesda, Maryland
    Search for articles by this author
  • Jan Willem C. van der Veen
    Affiliations
    Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health (NIMH) Intramural Research Program, National Institutes of Health (NIH), Bethesda, Maryland
    Search for articles by this author
  • Joseph H. Callicott
    Affiliations
    Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health (NIMH) Intramural Research Program, National Institutes of Health (NIH), Bethesda, Maryland
    Search for articles by this author
  • Venkata S. Mattay
    Affiliations
    Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health (NIMH) Intramural Research Program, National Institutes of Health (NIH), Bethesda, Maryland
    Search for articles by this author
  • Daniel R. Weinberger
    Affiliations
    Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health (NIMH) Intramural Research Program, National Institutes of Health (NIH), Bethesda, Maryland
    Search for articles by this author
  • Stefano Marenco
    Correspondence
    Address reprint requests to Stefano Marenco, M.D., Clinical Brain Disorders Branch, Genes Cognition and Psychosis Program, NIMH-NIH, Building 10-Room 4S235, 10 Center Drive, Bethesda, MD 20892
    Affiliations
    Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program, National Institute of Mental Health (NIMH) Intramural Research Program, National Institutes of Health (NIH), Bethesda, Maryland
    Search for articles by this author

      Background

      This study was conducted to corroborate prior evidence of an effect of the brain-derived neurotrophic factor (BDNF) valine (val) to methionine (met) amino acid substitution at codon 66 (val66met) polymorphism on measures of N-acetyl-aspartate (NAA) containing compounds in healthy subjects.

      Methods

      The NAA to creatine (Cre) ratio (NAA/Cre), NAA to choline (Cho) ratio (NAA/Cho), and Cho to Cre ratio (Cho/Cre) were measured in the left and right hippocampi, left and right dorsolateral prefrontal cortices, occipital lobe, anterior cingulate, and white matter of the centrum semiovale of 69 carefully screened healthy volunteers utilizing proton magnetic resonance spectroscopic imaging (MRSI) at 3 Tesla (T).

      Results

      Val/met subjects exhibited significantly reduced levels of left hippocampal NAA/Cre and NAA/Cho compared with val/val subjects. This effect was independent of age, IQ, number of voxels, hippocampal volume, or gray matter content in the voxels of interest. Analysis of other brain regions showed no effect of BDNF genotype on NAA measures.

      Conclusions

      We confirmed the association between the met-BDNF variant and reduced levels of hippocampal NAA found with a similar technique at 1.5T. The consonance of our results with prior findings adds to the evidence that the BDNF val/met genotype affects hippocampal biology with implications for a variety of neuropsychiatric disorders.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dempster E.
        • Toulopoulou T.
        • McDonald C.
        • Bramon E.
        • Walshe M.
        • Filbey F.
        • et al.
        Association between BDNF val66 met genotype and episodic memory.
        Am J Med Genet B Neuropsychiatr Genet. 2005; 134: 73-75
        • Egan M.F.
        • Kojima M.
        • Callicott J.H.
        • Goldberg T.E.
        • Kolachana B.S.
        • Bertolino A.
        • et al.
        The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function.
        Cell. 2003; 112: 257-269
        • Hariri A.R.
        • Goldberg T.E.
        • Mattay V.S.
        • Kolachana B.S.
        • Callicott J.H.
        • Egan M.F.
        • et al.
        Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance.
        J Neurosci. 2003; 23: 6690-6694
        • Tan Y.L.
        • Zhou D.F.
        • Cao L.Y.
        • Zou Y.Z.
        • Wu G.Y.
        • Zhang X.Y.
        Effect of the BDNF Val66Met genotype on episodic memory in schizophrenia.
        Schizophr Res. 2005; 77: 355-356
        • Ho B.C.
        • Milev P.
        • O'Leary D.S.
        • Librant A.
        • Andreasen N.C.
        • Wassink T.H.
        Cognitive and magnetic resonance imaging brain morphometric correlates of brain-derived neurotrophic factor Val66Met gene polymorphism in patients with schizophrenia and healthy volunteers.
        Arch Gen Psychiatry. 2006; 63: 731-740
        • Cheng C.Y.
        • Hong C.J.
        • Yu Y.W.
        • Chen T.J.
        • Wu H.C.
        • Tsai S.J.
        Brain-derived neurotrophic factor (Val66Met) genetic polymorphism is associated with substance abuse in males.
        Brain Res Mol Brain Res. 2005; 140: 86-90
        • Ribases M.
        • Gratacos M.
        • Fernandez-Aranda F.
        • Bellodi L.
        • Boni C.
        • Anderluh M.
        • et al.
        Association of BDNF with anorexia, bulimia and age of onset of weight loss in six European populations.
        Hum Mol Genet. 2004; 13: 1205-1212
        • Krebs M.O.
        • Guillin O.
        • Bourdell M.C.
        • Schwartz J.C.
        • Olie J.P.
        • Poirier M.F.
        • et al.
        Brain derived neurotrophic factor (BDNF) gene variants association with age at onset and therapeutic response in schizophrenia.
        Mol Psychiatry. 2000; 5: 558-562
        • Sklar P.
        • Gabriel S.B.
        • McInnis M.G.
        • Bennett P.
        • Lim Y.M.
        • Tsan G.
        • et al.
        Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus.
        Mol Psychiatry. 2002; 7: 579-593
        • Strauss J.
        • Barr C.L.
        • George C.J.
        • Devlin B.
        • Vetro A.
        • Kiss E.
        • et al.
        Brain-derived neurotrophic factor variants are associated with childhood-onset mood disorder: Confirmation in a Hungarian sample.
        Mol Psychiatry. 2005; 10: 861-867
        • Schumacher J.
        • Jamra R.A.
        • Becker T.
        • Ohlraun S.
        • Klopp N.
        • Binder E.B.
        • et al.
        Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression.
        Biol Psychiatry. 2005; 58: 307-314
        • Hong C.J.
        • Huo S.J.
        • Yen F.C.
        • Tung C.L.
        • Pan G.M.
        • Tsai S.J.
        Association study of a brain-derived neurotrophic-factor genetic polymorphism and mood disorders, age of onset and suicidal behavior.
        Neuropsychobiology. 2003; 48: 186-189
        • Wassink T.H.
        • Nelson J.J.
        • Crowe R.R.
        • Andreasen N.C.
        Heritability of BDNF alleles and their effect on brain morphology in schizophrenia.
        Am J Med Genet. 1999; 88: 724-728
        • Itoh K.
        • Hashimoto K.
        • Shimizu E.
        • Sekine Y.
        • Ozaki N.
        • Inada T.
        • et al.
        Association study between brain-derived neurotrophic factor gene polymorphisms and methamphetamine abusers in Japan.
        Am J Med Genet B Neuropsychiatr Genet. 2005; 132B: 70-73
        • Zhang H.
        • Ozbay F.
        • Lappalainen J.
        • Kranzler H.R.
        • van Dyck C.H.
        • Charney D.S.
        • et al.
        Brain derived neurotrophic factor (BDNF) gene variants and Alzheimer's disease, affective disorders, posttraumatic stress disorder, schizophrenia, and substance dependence.
        Am J Med Genet B Neuropsychiatr Genet. 2006; 141B: 387-393
        • Poo M.M.
        Neurotrophins as synaptic modulators.
        Nat Rev Neurosci. 2001; 2: 24-32
        • Altar C.A.
        • Siuciak J.A.
        • Wright P.
        • Ip N.Y.
        • Lindsay R.M.
        • Wiegand S.J.
        In situ hybridization of trkB and trkC receptor mRNA in rat forebrain and association with high-affinity binding of [125I]BDNF, [125I]NT-4/5 and [125I]NT-3.
        Eur J Neurosci. 1994; 6: 1389-1405
        • Chen Z.Y.
        • Patel P.D.
        • Sant G.
        • Meng C.X.
        • Teng K.K.
        • Hempstead B.L.
        • et al.
        Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons.
        J Neurosci. 2004; 24: 4401-4411
        • Miyajima F.
        • Ollier W.
        • Mayes A.
        • Jackson A.
        • Thacker N.
        • Rabbitt P.
        • et al.
        Brain-derived neurotrophic factor polymorphism Val66Met influences cognitive abilities in the elderly.
        Genes Brain Behav. 2008; 7: 411-417
        • Bueller J.A.
        • Aftab M.
        • Sen S.
        • Gomez-Hassan D.
        • Burmeister M.
        • Zubieta J.K.
        BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects.
        Biol Psychiatry. 2006; 59: 812-815
        • Frodl T.
        • Schule C.
        • Schmitt G.
        • Born C.
        • Baghai T.
        • Zill P.
        • et al.
        Association of the brain-derived neurotrophic factor Val66Met polymorphism with reduced hippocampal volumes in major depression.
        Arch Gen Psychiatry. 2007; 64: 410-416
        • Pezawas L.
        • Verchinski B.A.
        • Mattay V.S.
        • Callicott J.H.
        • Kolachana B.S.
        • Straub R.E.
        • et al.
        The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology.
        J Neurosci. 2004; 24: 10099-10102
        • Szeszko P.R.
        • Lipsky R.
        • Mentschel C.
        • Robinson D.
        • Gunduz-Bruce H.
        • Sevy S.
        • et al.
        Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation.
        Mol Psychiatry. 2005; 10: 631-636
        • Jung R.E.
        • Brooks W.M.
        • Yeo R.A.
        • Chiulli S.J.
        • Weers D.C.
        • Sibbitt Jr, W.L.
        Biochemical markers of intelligence: A proton MR spectroscopy study of normal human brain.
        Proc Biol Sci. 1999; 266: 1375-1379
        • Jung R.E.
        • Yeo R.A.
        • Chiulli S.J.
        • Sibbitt Jr, W.L.
        • Weers D.C.
        • Hart B.L.
        • et al.
        Biochemical markers of cognition: A proton MR spectroscopy study of normal human brain.
        Neuroreport. 1999; 10: 3327-3331
        • Valenzuela M.J.
        • Sachdev P.S.
        • Wen W.
        • Shnier R.
        • Brodaty H.
        • Gillies D.
        Dual voxel proton magnetic resonance spectroscopy in the healthy elderly: Subcortical-frontal axonal N-acetylaspartate levels are correlated with fluid cognitive abilities independent of structural brain changes.
        Neuroimage. 2000; 12: 747-756
        • Atmaca M.
        • Yildirim H.
        • Ozdemir H.
        • Poyraz A.K.
        • Tezcan E.
        • Ogur E.
        Hippocampal 1H MRS in first-episode bipolar I patients.
        Prog Neuropsychopharmacol Biol Psychiatry. 2006; 30: 1235-1239
        • Winsberg M.E.
        • Sachs N.
        • Tate D.L.
        • Adalsteinsson E.
        • Spielman D.
        • Ketter T.A.
        Decreased dorsolateral prefrontal N-acetyl aspartate in bipolar disorder.
        Biol Psychiatry. 2000; 47: 475-481
        • Ham B.J.
        • Chey J.
        • Yoon S.J.
        • Sung Y.
        • Jeong D.U.
        • Ju Kim S.
        • et al.
        Decreased N-acetyl-aspartate levels in anterior cingulate and hippocampus in subjects with post-traumatic stress disorder: A proton magnetic resonance spectroscopy study.
        Eur J Neurosci. 2007; 25: 324-329
        • Castro-Fornieles J.
        • Bargallo N.
        • Lazaro L.
        • Andres S.
        • Falcon C.
        • Plana M.T.
        • et al.
        Adolescent anorexia nervosa: Cross-sectional and follow-up frontal gray matter disturbances detected with proton magnetic resonance spectroscopy.
        J Psychiatr Res. 2007; 41: 952-958
        • Davidson J.R.
        • Krishnan K.R.
        • Charles H.C.
        • Boyko O.
        • Potts N.L.
        • Ford S.M.
        • et al.
        Magnetic resonance spectroscopy in social phobia: Preliminary findings.
        J Clin Psychiatry. 1993; 54: 19-25
        • Callicott J.H.
        • Egan M.F.
        • Bertolino A.
        • Mattay V.S.
        • Langheim F.J.
        • Frank J.A.
        • et al.
        Hippocampal N-acetyl aspartate in unaffected siblings of patients with schizophrenia: A possible intermediate neurobiological phenotype.
        Biol Psychiatry. 1998; 44: 941-950
        • Marenco S.
        • Bertolino A.
        • Weinberger D.R.
        In vivo NMR measures of NAA and the neurobiology of schizophrenia.
        Adv Exp Med Biol. 2006; 576 (discussion 361–223): 227-240
        • Bertolino A.
        • Nawroz S.
        • Mattay V.S.
        • Barnett A.S.
        • Duyn J.H.
        • Moonen C.T.
        • et al.
        Regionally specific pattern of neurochemical pathology in schizophrenia as assessed by multislice proton magnetic resonance spectroscopic imaging.
        Am J Psychiatry. 1996; 153: 1554-1563
        • Egan M.F.
        • Goldberg T.E.
        • Gscheidle T.
        • Weirich M.
        • Bigelow L.B.
        • Weinberger D.R.
        Relative risk of attention deficits in siblings of patients with schizophrenia.
        Am J Psychiatry. 2000; 157: 1309-1316
        • Tedeschi G.
        • Bertolino A.
        • Campbell G.
        • Barnett A.S.
        • Duyn J.H.
        • Jacob P.K.
        • et al.
        Reproducibility of proton MR spectroscopic imaging findings.
        AJNR Am J Neuroradiol. 1996; 17: 1871-1879
        • van Der Veen J.W.
        • Weinberger D.R.
        • Tedeschi G.
        • Frank J.A.
        • Duyn J.H.
        Proton MR spectroscopic imaging without water suppression.
        Radiology. 2000; 217: 296-300
        • Venkatraman T.N.
        • Hamer R.M.
        • Perkins D.O.
        • Song A.W.
        • Lieberman J.A.
        • Steen R.G.
        Single-voxel 1H PRESS at 4.0 T: Precision and variability of measurements in anterior cingulate and hippocampus.
        NMR Biomed. 2006; 19: 484-491
        • Jenkinson M.
        • Smith S.
        A global optimisation method for robust affine registration of brain images.
        Med Image Anal. 2001; 5: 143-156
        • Fischl B.
        • Salat D.H.
        • Busa E.
        • Albert M.
        • Dieterich M.
        • Haselgrove C.
        • et al.
        Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain.
        Neuron. 2002; 33: 341-355
        • Goldman A.L.
        • Pezawas L.
        • Mattay V.S.
        • Fischl B.
        • Verchinski B.A.
        • Zoltick B.
        • et al.
        Heritability of brain morphology related to schizophrenia: A large-scale automated magnetic resonance imaging segmentation study.
        Biol Psychiatry. 2008; 63: 475-483
        • Lang U.E.
        • Sander T.
        • Lohoff F.W.
        • Hellweg R.
        • Bajbouj M.
        • Winterer G.
        • et al.
        Association of the met66 allele of brain-derived neurotrophic factor (BDNF) with smoking.
        Psychopharmacology (Berl). 2007; 190: 433-439
        • Beuten J.
        • Ma J.Z.
        • Payne T.J.
        • Dupont R.T.
        • Quezada P.
        • Huang W.
        • et al.
        Significant association of BDNF haplotypes in European-American male smokers but not in European-American female or African-American smokers.
        Am J Med Genet B Neuropsychiatr Genet. 2005; 139B: 73-80
        • Gallinat J.
        • Lang U.E.
        • Jacobsen L.K.
        • Bajbouj M.
        • Kalus P.
        • von Haebler D.
        • et al.
        Abnormal hippocampal neurochemistry in smokers: Evidence from proton magnetic resonance spectroscopy at 3 T.
        J Clin Psychopharmacol. 2007; 27: 80-84
        • Agartz I.
        • Sedvall G.C.
        • Terenius L.
        • Kulle B.
        • Frigessi A.
        • Hall H.
        • et al.
        BDNF gene variants and brain morphology in schizophrenia.
        Am J Med Genet B Neuropsychiatr Genet. 2006; 141B: 513-523
        • Takahashi T.
        • Suzuki M.
        • Tsunoda M.
        • Kawamura Y.
        • Takahashi N.
        • Tsuneki H.
        • et al.
        Association between the brain-derived neurotrophic factor Val66Met polymorphism and brain morphology in a Japanese sample of schizophrenia and healthy comparisons.
        Neurosci Lett. 2008; 435: 34-39
        • Nemoto K.
        • Ohnishi T.
        • Mori T.
        • Moriguchi Y.
        • Hashimoto R.
        • Asada T.
        • et al.
        The Val66Met polymorphism of the brain-derived neurotrophic factor gene affects age-related brain morphology.
        Neurosci Lett. 2006; 397: 25-29
        • Bates T.E.
        • Strangward M.
        • Keelan J.
        • Davey G.P.
        • Munro P.M.
        • Clark J.B.
        Inhibition of N-acetylaspartate production: Implications for 1H MRS studies in vivo.
        Neuroreport. 1996; 7: 1397-1400
        • Petroff O.A.
        • Errante L.D.
        • Rothman D.L.
        • Kim J.H.
        • Spencer D.D.
        Neuronal and glial metabolite content of the epileptogenic human hippocampus.
        Ann Neurol. 2002; 52: 635-642
        • Carvalho A.L.
        • Caldeira M.V.
        • Santos S.D.
        • Duarte C.B.
        Role of the brain-derived neurotrophic factor at glutamatergic synapses.
        Br J Pharmacol. 2008; 153: 5310-5324
        • Katoh-Semba R.
        • Asano T.
        • Ueda H.
        • Morishita R.
        • Takeuchi I.K.
        • Inaguma Y.
        • et al.
        Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus.
        FASEB J. 2002; 16: 1328-1330
        • Pencea V.
        • Bingaman K.D.
        • Wiegand S.J.
        • Luskin M.B.
        Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus.
        J Neurosci. 2001; 21: 6706-6717
        • Schmidt H.D.
        • Duman R.S.
        The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior.
        Behav Pharmacol. 2007; 18: 391-418
        • Duman R.S.
        • Monteggia L.M.
        A neurotrophic model for stress-related mood disorders.
        Biol Psychiatry. 2006; 59: 1116-1127
        • Gould E.
        • Tanapat P.
        Stress and hippocampal neurogenesis.
        Biol Psychiatry. 1999; 46: 1472-1479
        • Gould E.
        • McEwen B.S.
        • Tanapat P.
        • Galea L.A.
        • Fuchs E.
        Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation.
        J Neurosci. 1997; 17: 2492-2498
        • Duman R.S.
        • Heninger G.R.
        • Nestler E.J.
        A molecular and cellular theory of depression.
        Arch Gen Psychiatry. 1997; 54: 597-606
        • McEwen B.S.
        • Magarinos A.M.
        • Reagan L.P.
        Structural plasticity and tianeptine: Cellular and molecular targets.
        Eur Psychiatry. 2002; 17: 318-330
        • Malberg J.E.
        • Eisch A.J.
        • Nestler E.J.
        • Duman R.S.
        Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus.
        J Neurosci. 2000; 20: 9104-9110
        • Czeh B.
        • Michaelis T.
        • Watanabe T.
        • Frahm J.
        • de Biurrun G.
        • van Kampen M.
        • et al.
        Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine.
        Proc Natl Acad Sci U S A. 2001; 98: 12796-12801
        • Czeh B.
        • Pudovkina O.
        • van der Hart M.G.
        • Simon M.
        • Heilbronner U.
        • Michaelis T.
        • et al.
        Examining SLV-323, a novel NK1 receptor antagonist, in a chronic psychosocial stress model for depression.
        Psychopharmacology (Berl). 2005; 180: 548-557
        • van der Hart M.G.
        • Czeh B.
        • de Biurrun G.
        • Michaelis T.
        • Watanabe T.
        • Natt O.
        • et al.
        Substance P receptor antagonist and clomipramine prevent stress-induced alterations in cerebral metabolites, cytogenesis in the dentate gyrus and hippocampal volume.
        Mol Psychiatry. 2002; 7: 933-941
        • Sartorius A.
        • Neumann-Haefelin C.
        • Vollmayr B.
        • Hoehn M.
        • Henn F.A.
        Choline rise in the rat hippocampus induced by electroconvulsive shock treatment.
        Biol Psychiatry. 2003; 53: 620-623
        • Moore G.J.
        • Bebchuk J.M.
        • Hasanat K.
        • Chen G.
        • Seraji-Bozorgzad N.
        • Wilds I.B.
        • et al.
        Lithium increases N-acetyl-aspartate in the human brain: In vivo evidence in support of bcl-2's neurotrophic effects?.
        Biol Psychiatry. 2000; 48: 1-8
        • Mathew S.J.
        • Price R.B.
        • Mao X.
        • Smith E.L.
        • Coplan J.D.
        • Charney D.S.
        • et al.
        Hippocampal N-acetylaspartate concentration and response to riluzole in generalized anxiety disorder.
        Biol Psychiatry. 2008; 63: 891-898
        • Obergriesser T.
        • Ende G.
        • Braus D.F.
        • Henn F.A.
        Long-term follow-up of magnetic resonance-detectable choline signal changes in the hippocampus of patients treated with electroconvulsive therapy.
        J Clin Psychiatry. 2003; 64: 775-780
        • Ende G.
        • Braus D.F.
        • Walter S.
        • Weber-Fahr W.
        • Henn F.A.
        The hippocampus in patients treated with electroconvulsive therapy: A proton magnetic resonance spectroscopic imaging study.
        Arch Gen Psychiatry. 2000; 57: 937-943
        • Manganas L.N.
        • Zhang X.
        • Li Y.
        • Hazel R.D.
        • Smith S.D.
        • Wagshul M.E.
        • et al.
        Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain.
        Science. 2007; 318: 980-985
        • Rothman K.J.
        No adjustments are needed for multiple comparisons.
        Epidemiology. 1990; 1: 43-46