Advertisement
Archival Report| Volume 64, ISSUE 12, P1051-1059, December 15, 2008

Abnormal Auditory N100 Amplitude: A Heritable Endophenotype in First-Degree Relatives of Schizophrenia Probands

      Background

      N100 evoked potential amplitude and gating abnormalities have been widely observed in schizophrenia patients. However, previous studies have been inconclusive as to whether similar deficits are present in unaffected family members. The Consortium on the Genetics of Schizophrenia (COGS) is a multisite National Institute of Mental Health (NIMH) initiative examining neurocognitive and neurophysiological measures as endophenotypes for genetic studies of schizophrenia. We report initial results from the COGS dataset of auditory N100 amplitude and gating as candidate endophenotypes.

      Methods

      Evoked potential data were acquired from 142 schizophrenia probands, 373 unaffected first-degree relatives, and 221 community comparison subjects (CCS), using an auditory paired-click stimulation paradigm. Amplitude of the N100 response to each click and the click 2/click 1 ratio were dependent variables. Heritability was estimated based on kinships using Solar v.2.1.2. Group differences were examined after subjects were categorized as either “broad” or “narrow,” based on the presence (broad) or absence (narrow) of nonpsychotic psychiatric comorbidity.

      Results

      Heritability estimates were .40 and .29 for click1 and click2 amplitudes and .22 for the ratio. Broad and narrow patients both had impaired click 1 amplitudes. Broad relatives, but not narrow relatives, exhibited similar impairments. There were no group differences for either click 2 amplitude or the gating ratio.

      Conclusions

      N100 amplitude is a heritable measure that is abnormal in patients and a subset of relatives for whom psychiatric comorbidity may be a genetically associated phenotype. Auditory N100 gating, although heritable, is less viable as a schizophrenia endophenotype.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gottesman I.I.
        Schizophrenia Genesis: The Origins of Madness.
        W.H. Freeman, New York1991
        • Braff D.L.
        • Freedman R.
        Endophenotypes in studies of the genetics of schizophrenia.
        in: Davis K.L. Charney D. Coyle J.T. Nemeroff C.B. Neuropsychopharmacology: The Fifth Generation of Progress. Lippincott/Williams & Wilkins, Philadelphia2002: 703-716
        • Harrison P.J.
        • Weinberger D.R.
        Schizophrenia genes, gene expression, and neuropathology: On the matter of their convergence.
        Mol Psychiatry. 2005; 10: 40-68
        • Tsuang M.T.
        • Stone W.S.
        • Faraone S.V.
        Genes, environment and schizophrenia.
        Br J Psychiatry Suppl. 2001; 40: s18-s24
        • Waterwort D.M.
        • Bassett A.S.
        • Brzustowicz L.M.
        Recent advances in the genetics of schizophrenia.
        Cell Mol Life Sci. 2002; 59: 331-348
        • Mowry B.J.
        • Nancarrow D.J.
        Molecular genetics of schizophrenia.
        Clin Exp Pharmacol Physiol. 2001; 28: 66-69
        • Turetsky B.I.
        • Calkins M.E.
        • Light G.A.
        • Olincy A.
        • Radant A.D.
        • Swerdlow N.R.
        Neurophysiological endophenotypes of schizophrenia: The viability of selected candidate measures.
        Schizophr Bull. 2007; 33: 69-94
        • Gottesman I.I.
        • Gould T.D.
        The endophenotype concept in psychiatry: Etymology and strategic intentions.
        Am J Psychiatry. 2003; 160: 636-645
        • Braff D.L.
        • Freedman R.
        • Schork N.J.
        • Gottesman I.I.
        Deconstructing schizophrenia: An overview of the use of endophenotypes in order to understand a complex disorder.
        Schizophr Bull. 2007; 33: 21-32
        • Laurent A.
        • Garcia-Larrea L.
        • d'Amato T.
        • Bosson J.
        • Saoud M.
        • Marie-Cardine M.
        • et al.
        Auditory event-related potentials and clinical scores in unmedicated schizophrenic patients.
        Psychiatry Res. 1999; 86: 229-238
        • Strik W.
        • Dierks T.
        • Boning J.
        • Osterheider M.
        • Caspari A.
        • Korber J.
        Disorders of smooth pursuit eye movement and auditory N100 in schizophrenic patients.
        Psychiatry Res. 1992; 41: 227-235
        • Hari R.
        • Pelizzone M.
        • Makela J.
        • Hallstrom J.
        • Leinonen L.
        • Lounasmaa O.V.
        Neuromagnetic responses of the human auditory cortex to on- and offsets of noise bursts.
        Audiology. 1987; 26: 31-43
        • Putnam L.E.
        • Roth W.T.
        Automatic elicitation of cognitive components by startling stimuli.
        Electroencephalogr Clin Neurophysiol Suppl. 1987; 40: 256-262
        • Brown C.R.
        • Clarke A.R.
        • Barry R.J.
        Inter-modal attention: ERPs to auditory targets in an inter-modal oddball task.
        Int J Psychophysiol. 2006; 62: 77-86
        • O'Donnell B.
        • Vohs J.
        • Hetrick W.
        • Carroll C.
        • Shekhar A.
        Auditory event-related potential abnormalities in bipolar disorder and schizophrenia.
        Int J Psychophysiol. 2004; 53: 45-55
        • Blumenfeld L.D.
        • Clementz B.A.
        Response to the first stimulus determines reduced auditory evoked response suppression in schizophrenia: Single trial analysis using MEG.
        Clin Neurophysiol. 2001; 112: 1650-1659
        • Clementz B.A.
        • Blumenfeld L.D.
        Multichannel electroencephalographic assessment of auditory evoked response suppression in schizophrenia.
        Exp Brain Res. 2001; 139: 377-390
        • Boutros N.N.
        • Korzyukov O.
        • Jansen B.
        • Feingold A.
        • Bell M.
        Sensory gating deficits during the mid-latency phase of information processing in medicated schizophrenia patients.
        Psychiatry Res. 2004; 126: 203-215
        • Brockhaus-Dumke A.
        • Schultze-Lutter F.
        • Mueller R.
        • Tendolkar I.
        • Bechdolf A.
        • Pukrop R.
        • et al.
        Sensory gating in schizophrenia: P50 and N100 gating in antipsychotic-free subjects at risk, first-episode, and chronic patients.
        Biol Psychiatry. 2008; ([published online ahead of print April 4])
        • Freedman R.
        • Adler L.E.
        • Leonard S.
        Alternative phenotypes for the complex genetics of schizophrenia.
        Biol Psychiatry. 1999; 45: 551-558
        • Smith D.A.
        • Boutros N.N.
        • Schwarzkopf S.B.
        Reliability of P50 auditory event-related potential indices of sensory gating.
        Psychophysiology. 1994; 31: 495-502
        • Fuerst D.R.
        • Gallinat J.
        • Boutros N.N.
        Range of sensory gating values and test-retest reliability in normal subjects.
        Psychophysiology. 2007; 44: 620-626
        • Roth W.T.
        • Horvath T.B.
        • Pfefferbaum A.
        • Kopell B.S.
        Event-related potentials in schizophrenics.
        Electroencephalogr Clin Neurophysiol. 1980; 48: 127-139
        • Shelley A.M.
        • Silipo G.
        • Javitt D.C.
        Diminished responsiveness of ERPs in schizophrenic subjects to changes in auditory stimulation parameters: Implications for theories of cortical dysfunction.
        Schizophr Res. 1999; 37: 65-79
        • Clunas N.
        • Ward P.
        Auditory recovery cycle dysfunction in schizophrenia: A study using event-related potentials.
        Psychiatry Res. 2005; 136: 17-25
        • Sumich A.
        • Harris A.
        • Flynn G.
        • Whitford T.
        • Tunstall N.
        • Kumari V.
        • et al.
        Event-related potential correlates of depression, insight and negative symptoms in males with recent-onset psychosis.
        Clin Neurophysiol. 2006; 117: 1715-1727
        • Ogura C.
        • Nageishi Y.
        • Matsubayashi M.
        • Omura F.
        • Kishimoto A.
        • Shimokochi M.
        Abnormalities in event-related potentials, N100, P200, P300 and slow wave in schizophrenia.
        Jpn J Psychiatry Neurol. 1991; 45: 57-65
        • Ahveninen J.
        • Jääskeläinen I.P.
        • Osipova D.
        • Huttunen M.O.
        • Ilmoniemi R.J.
        • Kaprio J.
        • et al.
        Inherited auditory-cortical dysfunction in twin pairs discordant for schizophrenia.
        Biol Psychiatry. 2006; 60: 612-620
        • Frangou S.
        • Sharma T.
        • Alarcon G.
        • Sigmudsson T.
        • Takei N.
        • Binnie C.
        • et al.
        The Maudsley Family Study, II: Endogenous event-related potentials in familial schizophrenia.
        Schizophr Res. 1997; 23: 45-53
        • Karoumi B.
        • Laurent A.
        • Rosenfeld F.
        • Rochet T.
        • Brunon A.M.
        • Dalery J.
        • et al.
        Alteration of event related potentials in siblings discordant for schizophrenia.
        Schizophr Res. 2000; 41: 325-334
        • Winterer G.
        • Egan M.F.
        • Rädler T.
        • Coppola R.
        • Weinberger D.R.
        Event-related potentials and genetic risk for schizophrenia.
        Biol Psychiatry. 2001; 50: 407-417
        • Waldo M.C.
        • Adler L.E.
        • Freedman R.
        Defects in auditory sensory gating and their apparent compensation in relatives of schizophrenics.
        Schizophr Res. 1988; 1: 19-24
        • Anokhin A.P.
        • Vedeniapin A.B.
        • Heath A.C.
        • Korzyukov O.
        • Boutros N.N.
        Genetic and environmental influences on sensory gating of mid-latency auditory evoked responses: A twin study.
        Schizophr Res. 2007; 89: 312-319
        • Calkins M.E.
        • Dobie D.J.
        • Cadenhead K.S.
        • Olincy A.
        • Freedman R.
        • Green M.F.
        • et al.
        The Consortium on the Genetics of Endophenotypes in Schizophrenia (COGS): “Model” recruitment and assessment methods in a multi-site collaboration.
        Schizophr Bull. 2007; 33: 33-48
        • Nurnberger Jr, J.I.
        • Blehar M.C.
        • Kaufmann C.A.
        • York-Cooler C.
        • Simpson S.G.
        • Harkavy-Friedman J.
        • et al.
        Diagnostic interview for genetic studies.
        Arch Gen Psychiatry. 1994; 51: 849-859
        • NIMH Genetics Initiative
        Family Interview for Genetic Studies (FIGS).
        National Institute of Mental Health, Rockville, MD1992
        • Andreasen N.C.
        The Scale for the Assessment of Negative Symptoms.
        The University of Iowa, Iowa City1983
        • Andreasen N.C.
        The Scale for the Assessment of Positive Symptoms.
        The University of Iowa, Iowa City1984
        • Folstein M.F.
        • Folstein S.E.
        • McHugh P.R.
        “Mini-Mental State.” A practical method for grading the cognitive state of patients for the clinician.
        J Psychiatr Res. 1975; 12: 189-198
        • Kendler K.S.
        • Lieberman J.A.
        • Walsh D.
        The Structured Interview for Schizotypy (SIS): A preliminary report.
        Schizophr Bull. 1989; 15: 559-571
        • Griffith J.
        • Hoffer L.D.
        • Adler L.E.
        • Zerbe G.O.
        • Freedman R.
        Effects of sound intensity on a midlatency evoked response to repeated auditory stimuli in schizophrenic and normal subjects.
        Psychophysiology. 1995; 32: 460-466
        • Gratton G.
        • Coles M.G.
        • Donchin E.
        A new method for off-line removal of ocular artifact.
        Electroencephalogr Clin Neurophysiol. 1983; 55: 468-484
        • Almasy L.
        • Blangero J.
        Multipoint quantitative-trait linkage analysis in general pedigrees.
        Am J Hum Genet. 1998; 62: 1198-1211
        • Boehnke M.
        • Lange K.
        Ascertainment and goodness of fit of variance component models for pedigree data.
        Prog Clin Biol Res. 1984; 147: 173-192
        • Hopper J.L.
        • Mathews J.D.
        Extensions to multivariate normal models for pedigree analysis.
        Ann Hum Genet. 1982; 46: 373-383
        • Almasy L.
        • Dyer T.D.
        • Blangero J.
        Bivariate quantitative trait linkage analysis: Pleiotropy versus co-incident linkages.
        Genet Epidemiol. 1997; 14: 953-958
        • Cohen J.
        A power primer.
        Psychol Bull. 1992; 112: 155-159
        • Erlenmeyer-Kimling L.
        • Adamo U.H.
        • Rock D.
        • Roberts S.A.
        • Bassett A.S.
        • Squires-Wheeler E.
        • et al.
        The New York High-Risk Project.
        Arch Gen Psychiatry. 1997; 54: 1096-1102
        • Kendler K.S.
        • Karkowski-Shuman L.
        • Walsh D.
        The risk for psychiatric illness in siblings of schizophrenics: The impact of psychotic and non-psychotic affective illness and alcoholism in parents.
        Acta Psychiatr Scand. 1996; 94: 49-55
        • Walsh C.
        • Gill M.
        Psychiatric morbidity in the relatives of schizophrenic probands.
        Br J Psychiatry. 1993; 163: 695
        • Brown K.J.
        • Gonsalvez C.J.
        • Harris A.W.
        • Williams L.M.
        • Gordon E.
        Target and non-target ERP disturbances in first episode vs. chronic schizophrenia.
        Clin Neurophysiol. 2002; 113: 1754-1763
        • Yvert B.
        • Fischer C.
        • Bertrand O.
        • Pernier J.
        Localization of human supratemporal auditory areas from intracerebral auditory evoked potentials using distributed source models.
        Neuroimage. 2005; 28: 140-153
        • Maxwell C.R.
        • Liang Y.
        • Kelly M.P.
        • Kanes S.J.
        • Abel T.
        • Siegel S.J.
        Mice expressing constitutively active gsalpha exhibit stimulus encoding deficits similar to those observed in schizophrenia patients.
        Neuroscience. 2006; 141: 1257-1264