Archival Report| Volume 64, ISSUE 10, P863-870, November 15, 2008

Download started.


Glial Loss in the Prefrontal Cortex Is Sufficient to Induce Depressive-like Behaviors

  • Mounira Banasr
    Laboratory of Molecular Psychiatry, Center for Genes and Behavior, Departments of Psychiatry and Pharmacology, Yale University School of Medicine, New Haven, Connecticut
    Search for articles by this author
  • Ronald S. Duman
    Address reprint requests to Ronald S. Duman, Ph.D., Yale University School of Medicine, Laboratory of Molecular Psychiatry, 34 Park Street, Room S308, New Haven, CT 06508
    Laboratory of Molecular Psychiatry, Center for Genes and Behavior, Departments of Psychiatry and Pharmacology, Yale University School of Medicine, New Haven, Connecticut
    Search for articles by this author


      Postmortem studies have repeatedly found decreased density and number of glia in cortical regions, including the prefrontal and cingulate areas, from depressed patients. However, it is unclear whether this glial loss plays a direct role in the expression of depressive symptoms.


      To address this question, we characterized the effects of pharmacologic glial ablation in the prefrontal cortex (PFC) of adult rats on behavioral tests known to be affected by stress or antidepressant treatments: sucrose preference test (SPT), novelty suppressed feeding test (NSFT), forced swim test (FST), and two-way active avoidance test (AAT). We established the dose and time course for the actions of an astrocyte specific toxin, L-alpha-aminoadipic acid (L-AAA), and compared the behavioral effects of this gliotoxin with the effects of an excitotoxic (ibotenate) lesion and to the effects of chronic stress.


      The results demonstrate that L-AAA infusions induced anhedonia in SPT, anxiety in NSFT, and helplessness in FST and AAT. These effects of L-AAA were similar to chronic unpredictable stress (CUS)-induced depressive-like behaviors in these tests. However, ibotenate-induced neurotoxic lesion of the PFC had no effect in these behavioral tests.


      The results demonstrate that glial ablation in the PFC is sufficient to induce depressive-like behaviors similar to chronic stress and support the hypothesis that loss of glia contributes to the core symptoms of depression.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Bremner J.D.
        • Vythilingam M.
        • Vermetten E.
        • Nazeer A.
        • Adil J.
        • Khan S.
        • et al.
        Reduced volume of orbitofrontal cortex in major depression.
        Biol Psychiatry. 2002; 51: 273-279
        • Drevets W.C.
        Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression.
        Prog Brain Res. 2000; 126: 413-431
        • Sheline Y.I.
        Neuroimaging studies of mood disorder effects on the brain.
        Biol Psychiatry. 2003; 54: 338-352
        • Rajkowska G.
        • Miguel-Hidalgo J.J.
        Gliogenesis and glial pathology in depression.
        CNS Neurol Disord Drug Targets. 2007; 6: 219-233
        • Banasr M.
        • Duman R.S.
        Regulation of neurogenesis and gliogenesis by stress and antidepressant treatment.
        CNS Neurol Disord Drug Targets. 2007; 6: 311-320
        • Cotter D.
        • Mackay D.
        • Landau S.
        • Kerwin R.
        • Everall I.
        Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder.
        Arch Gen Psychiatry. 2001; 58: 545-553
        • Cotter D.R.
        • Pariante C.M.
        • Everall I.P.
        Glial cell abnormalities in major psychiatric disorders: The evidence and implications.
        Brain Res Bull. 2001; 55: 585-595
        • Cotter D.
        • Mackay D.
        • Chana G.
        • Beasley C.
        • Landau S.
        • Everall I.P.
        Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder.
        Cereb Cortex. 2002; 12: 386-394
        • Ongur D.
        • Drevets W.C.
        • Price J.L.
        Glial reduction in the subgenual prefrontal cortex in mood disorders.
        Proc Natl Acad Sci U S A. 1998; 95: 13290-13295
        • Rajkowska G.
        Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells.
        Biol Psychiatry. 2000; 48: 766-777
        • Miguel-Hidalgo J.J.
        • Baucom C.
        • Dilley G.
        • Overholser J.C.
        • Meltzer H.Y.
        • Stockmeier C.A.
        • et al.
        Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder.
        Biol Psychiatry. 2000; 48: 861-873
        • Choudary P.V.
        • Molnar M.
        • Evans S.J.
        • Tomita H.
        • Li J.Z.
        • Vawter M.P.
        • et al.
        Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression.
        Proc Natl Acad Sci U S A. 2005; 102: 15653-15658
        • Duman R.S.
        Structural alterations in depression: Cellular mechanisms underlying pathology and treatment of mood disorders.
        CNS Spectr. 2002; 7: 140-142
        • Duman R.S.
        Role of neurotrophic factors in the etiology and treatment of mood disorders.
        Neuromolecular Med. 2004; 5: 11-25
        • Manji H.K.
        • Duman R.S.
        Impairments of neuroplasticity and cellular resilience in severe mood disorders: Implications for the development of novel therapeutics.
        Psychopharmacol Bull. 2001; 35: 5-49
        • Nestler E.J.
        • Gould E.
        • Manji H.
        • Buncan M.
        • Duman R.S.
        • Greshenfeld H.K.
        • et al.
        Preclinical models: Status of basic research in depression.
        Biol Psychiatry. 2002; 52: 503-528
        • Willner P.
        Chronic mild stress (CMS) revisited: Consistency and behavioural-neurobiological concordance in the effects of CMS.
        Neuropsychobiology. 2005; 52: 90-110
        • Willner P.
        • Muscat R.
        • Papp M.
        Chronic mild stress-induced anhedonia: A realistic animal model of depression.
        Neurosci Biobehav Rev. 1992; 16: 525-534
        • Takada M.
        • Hattori T.
        Fine structural changes in the rat brain after local injections of gliotoxin, alpha-aminoadipic acid.
        Histol Histopathol. 1986; 1: 271-275
        • Brown D.R.
        • Kretzschmar H.A.
        The glio-toxic mechanism of alpha-aminoadipic acid on cultured astrocytes.
        J Neurocytol. 1998; 27: 109-118
        • McBean G.J.
        Intrastriatal injection of DL-alpha-aminoadipate reduces kainate toxicity in vitro.
        Neuroscience. 1990; 34: 225-234
        • McBean G.J.
        Inhibition of the glutamate transporter and glial enzymes in rat striatum by the gliotoxin, alpha aminoadipate.
        Br J Pharmacol. 1994; 113: 536-540
        • Khurgel M.
        • Koo A.C.
        • Ivy G.O.
        Selective ablation of astrocytes by intracerebral injections of alpha-aminoadipate.
        Glia. 1996; 16: 351-358
        • Banasr M.
        • Valentine G.W.
        • Li X.Y.
        • Gourley S.L.
        • Taylor J.R.
        • Duman R.S.
        Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of the adult rat.
        Biol Psychiatry. 2007; 62: 496-504
        • Risterucci C.
        • Coccurello R.
        • Banasr M.
        • Stutzmann J.M.
        • Amalric M.
        • Nieoullon A.
        The metabotropic glutamate receptor subtype 5 antagonist MPEP and the Na+ channel blocker riluzole show different neuroprotective profiles in reversing behavioral deficits induced by excitotoxic prefrontal cortex lesions.
        Neuroscience. 2006; 137: 211-220
        • Gorka Z.
        • Moryl E.
        • Papp M.
        Effect of chronic mild stress on circadian rhythms in the locomotor activity in rats.
        Pharmacol Biochem Behav. 1996; 54: 229-234
        • Warner-Schmidt J.L.
        • Duman R.S.
        VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants.
        Proc Natl Acad Sci U S A. 2007; 104: 4647-4652
        • Porsolt R.D.
        • Anton N.
        • Blavet N.
        • Jalfre M.
        Behavioral despair test: A new model sensitive to antidepressant treatments.
        Eur J Pharmacol. 1979; 47: 379-391
        • Detke M.J.
        • Rickels M.
        • Lucki I.
        Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants.
        Psychopharmacology (Berl). 1995; 121: 66-72
        • Haidkind R.
        • Eller M.
        • Harro M.
        • Kask A.
        • Rinken A.
        • Oreland L.
        • et al.
        Effects of partial locus coeruleus denervation and chronic mild stress on behaviour and monoamine neurochemistry in the rat.
        Eur Neuropsychopharmacol. 2003; 13: 19-28
        • Rasmusson A.M.
        • Shi L.
        • Duman R.
        Downregulation of BDNF mRNA in the hippocampal dentate gyrus after re-exposure to cues previously associated with footshock.
        Neuropsychopharmacology. 2002; 27: 133-142
        • Malberg J.E.
        • Duman R.S.
        Cell proliferation in adult hippocampus is decreased by inescapable stress: Reversal by fluoxetine treatment.
        Neuropsychopharmacology. 2003; 28: 1562-1571
        • Shirayama Y.
        • Chen A.C.
        • Nakagawa S.
        • Russell D.S.
        • Duman R.S.
        Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression.
        J Neurosci. 2002; 22: 3251-3261
        • Banasr M.
        • Hery M.
        • Brezun J.M.
        • Daszuta A.
        Serotonin mediates oestrogen stimulation of cell proliferation in the adult dentate gyrus.
        Eur J Neurosci. 2001; 14: 1417-1424
        • Koo J.W.
        • Duman R.S.
        IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress.
        Proc Natl Acad Sci U S A. 2008; 105: 751-756
        • Willner P.
        • Muscat R.
        • Papp M.
        An animal model of anhedonia.
        Clin Neuropharmacol. 1992; 15: 550A-551A
        • Rajkowska G.
        • Halaris A.
        • Selemon L.D.
        Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder.
        Biol Psychiatry. 2001; 49: 741-752
        • Webster M.J.
        • Knable M.B.
        • Johnston-Wilson N.
        • Nagata K.
        • Inagaki M.
        • Yolken R.H.
        Immunohistochemical localization of phosphorylated glial fibrillary acidic protein in the prefrontal cortex and hippocampus from patients with schizophrenia, bipolar disorder, and depression.
        Brain Behav Immun. 2001; 15: 388-400
        • Johnston-Wilson N.L.
        • Sims C.D.
        • Hofmann J.P.
        • Anderson L.
        • Shore A.D.
        • Torrey E.F.
        • et al.
        Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder.
        Mol Psychiatry. 2000; 5: 142-149
        • Si X.
        • Miguel-Hidalgo J.J.
        • O'Dwyer G.
        • Stockmeier C.A.
        • Rajkowska G.
        Age-dependent reductions in the level of glial fibrillary acidic protein in the prefrontal cortex in major depression.
        Neuropsychopharmacology. 2004; 29: 2088-2096
        • Czeh B.
        • Simon M.
        • Schmelting B.
        • Hiemke C.
        • Fuchs E.
        Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment.
        Neuropsychopharmacology. 2006; 31: 1616-1626
        • Czeh B.
        • Lucassen P.J.
        What causes the hippocampal volume decrease in depression?.
        Eur Arch Psychiatry Clin Neurosci. 2007; 257: 250-260
        • Schmidt H.D.
        • Duman R.S.
        The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior.
        Behav Pharmacol. 2007; 18: 391-418
        • Radley J.J.
        • Rocher A.B.
        • Miller M.
        • Janssen W.G.
        • Liston C.
        • Hof P.R.
        • et al.
        Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex.
        Cereb Cortex. 2006; 16: 313-320
        • Radley J.J.
        • Sisti H.M.
        • Hao J.
        • Rocher A.B.
        • McCall T.
        • Hof P.R.
        • et al.
        Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex.
        Neuroscience. 2004; 125: 1-6
        • Sapolsky R.M.
        The possibility of neurotoxicity in the hippocampus in major depression: A primer on neuron death.
        Biol Psychiatry. 2000; 48: 755-765
        • McEwen B.S.
        Plasticity of the hippocampus: Adaptation to chronic stress and allostatic load.
        Ann N Y Acad Sci. 2001; 933: 265-277
        • Rajkowska G.
        • O'Dwyer G.
        • Teleki Z.
        • Stockmeier C.A.
        • Miguel-Hidalgo J.J.
        GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression.
        Neuropsychopharmacology. 2007; 32: 471-482
        • Lacroix L.
        • Broersen L.M.
        • Weiner I.
        • Feldon J.
        The effects of excitotoxic lesion of the medial prefrontal cortex on latent inhibition, prepulse inhibition, food hoarding, elevated plus maze, active avoidance and locomotor activity in the rat.
        Neuroscience. 1998; 84: 431-442
        • Maaswinkel H.
        • Gispen W.H.
        • Spruijt B.M.
        Effects of an electrolytic lesion of the prelimbic area on anxiety-related and cognitive tasks in the rat.
        Behav Brain Res. 1996; 79: 51-59
        • Danbolt N.C.
        Glutamate uptake.
        Prog Neurobiol. 2001; 65: 1-105
        • Sattler R.
        • Rothstein J.D.
        Targeting an old mechanism in a new disease-protection of glutamatergic dysfunction in depression.
        Biol Psychiatry. 2007; 61: 137-138
        • Sanacora G.
        • Rothman D.L.
        • Mason G.
        • Krystal J.H.
        Clinical studies implementing glutamate neurotransmission in mood disorders.
        Ann N Y Acad Sci. 2003; 1003: 292-308