Archival Report| Volume 64, ISSUE 11, P941-950, December 01, 2008

ΔFosB-Mediated Alterations in Dopamine Signaling Are Normalized by a Palatable High-Fat Diet


      Sensitivity to reward has been implicated as a predisposing factor for behaviors related to drug abuse as well as overeating. However, the underlying mechanisms contributing to reward sensitivity are unknown. We hypothesized that a dysregulation in dopamine signaling might be an underlying cause of heightened reward sensitivity whereby rewarding stimuli could act to normalize the system.


      We used a genetic mouse model of increased reward sensitivity, the ΔFosB-overexpressing mouse, to examine reward pathway changes in response to a palatable high-fat diet. Markers of reward signaling in these mice were examined both basally and following 6 weeks of palatable diet exposure. Mice were examined in a behavioral test following high-fat diet withdrawal to assess the vulnerability of this model to removal of rewarding stimuli.


      Our results demonstrate altered reward pathway activation along the nucleus accumbens-hypothalamic-ventral tegmental area circuitry resulting from overexpression of ΔFosB in the nucleus accumbens and striatal regions. Levels of phosphorylated cyclic adenosine monophosphate (cAMP) response element binding protein (pCREB), brain-derived neurotrophic factor (BDNF), and dopamine and cyclic adenosine monophosphate regulated phosphoprotein with a molecular mass of 32 kDa (DARPP-32) in the nucleus accumbens were reduced in ΔFosB mice, suggestive of reduced dopamine signaling. Six weeks of high-fat diet exposure completely ameliorated these differences, revealing the potent rewarding capacity of a palatable diet. ΔFosB mice also showed a significant increase in locomotor activity and anxiety-related responses 24 hours following high-fat withdrawal.


      These results establish an underlying sensitivity to changes in reward related to dysregulation of ΔFosB and dopamine signaling that can be normalized with palatable diets and may be a predisposing phenotype in some forms of obesity.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Wadden T.A.
        • Berkowitz R.I.
        • Womble L.G.
        • Sarwer D.B.
        • Phelan S.
        • Cato R.K.
        • et al.
        Randomized trial of lifestyle modification and pharmacotherapy for obesity.
        N Engl J Med. 2005; 353: 2111-2120
        • Blendy J.A.
        • Strasser A.
        • Walters C.L.
        • Perkins K.A.
        • Patterson F.
        • Berkowitz R.
        • Lerman C.
        Reduced nicotine reward in obesity: Cross-comparison in human and mouse.
        Psychopharmacology (Berl). 2005; 180: 306-315
        • Franken I.H.
        • Muris P.
        Individual differences in reward sensitivity are related to food craving and relative body weight in healthy women.
        Appetite. 2005; 45: 198-201
        • Kelley A.E.
        • Berridge K.C.
        The neuroscience of natural rewards: Relevance to addictive drugs.
        J Neurosci. 2002; 22: 3306-3311
        • Cagniard B.
        • Balsam P.D.
        • Brunner D.
        • Zhuang X.
        Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward.
        Neuropsychopharmacology. 2006; 31: 1362-1370
        • Liang N.C.
        • Hajnal A.
        • Norgren R.
        Sham feeding corn oil increases accumbens dopamine in the rat.
        Am J Physiol Regul Integr Comp Physiol. 2006; 291: R1236-R1239
        • Mendoza J.
        • Angeles-Castellanos M.
        • Escobar C.
        Entrainment by a palatable meal induces food-anticipatory activity and c-Fos expression in reward-related areas of the brain.
        Neuroscience. 2005; 133: 293-303
        • Schroeder B.E.
        • Binzak J.M.
        • Kelley A.E.
        A common profile of prefrontal cortical activation following exposure to nicotine- or chocolate-associated contextual cues.
        Neuroscience. 2001; 105: 535-545
        • Nestler E.J.
        • Barrot M.
        • Self D.W.
        DeltaFosB: A sustained molecular switch for addiction.
        Proc Natl Acad Sci U S A. 2001; 98: 11042-11046
        • Teegarden S.L.
        • Bale T.L.
        Decreases in dietary preference produce increased emotionality and risk for dietary relapse.
        Biol Psychiatry. 2007; 61: 1021-1029
        • Olausson P.
        • Jentsch J.D.
        • Tronson N.
        • Nestler E.J.
        • Taylor J.R.
        dFosB in the nucleus accumbens regulates food-reinforced instrumental behavior and motivation.
        J Neurosci. 2006; 26: 9196-9204
        • Chen J.
        • Kelz M.B.
        • Zeng G.
        • Sakai N.
        • Steffen C.
        • Shockett P.E.
        • et al.
        Transgenic animals with inducible, targeted gene expression in brain.
        Mol Pharmacol. 1998; 54: 495-503
        • Kelz M.B.
        • Chen J.
        • Carlezon Jr, W.A.
        • Whisler K.
        • Gilden L.
        • Beckmann A.M.
        • et al.
        Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine.
        Nature. 1999; 401: 272-276
        • Bale T.L.
        • Dorsa D.M.
        Sex differences in and effects of estrogen on oxytocin receptor messenger ribonucleic acid expression in the ventromedial hypothalamus.
        Endocrinology. 1995; 136: 27-32
        • Avena N.M.
        • Long K.A.
        • Hoebel B.G.
        Sugar-dependent rats show enhanced responding for sugar after abstinence: Evidence of a sugar deprivation effect.
        Physiol Behav. 2005; 84: 359-362
        • Will M.J.
        • Franzblau E.B.
        • Kelley A.E.
        Nucleus accumbens mu-opioids regulate intake of a high-fat diet via activation of a distributed brain network.
        J Neurosci. 2003; 23: 2882-2888
        • Zheng H.
        • Patterson L.M.
        • Berthoud H.R.
        Orexin signaling in the ventral tegmental area is required for high-fat appetite induced by opioid stimulation of the nucleus accumbens.
        J Neurosci. 2007; 27: 11075-11082
        • Hommel J.D.
        • Trinko R.
        • Sears R.M.
        • Georgescu D.
        • Liu Z.W.
        • Gao X.B.
        • et al.
        Leptin receptor signaling in midbrain dopamine neurons regulates feeding.
        Neuron. 2006; 51: 801-810
        • Colby C.R.
        • Whisler K.
        • Steffen C.
        • Nestler E.J.
        • Self D.W.
        Striatal cell type-specific overexpression of DeltaFosB enhances incentive for cocaine.
        J Neurosci. 2003; 23: 2488-2493
        • Zachariou V.
        • Bolanos C.A.
        • Selley D.E.
        • Theobald D.
        • Cassidy M.P.
        • Kelz M.B.
        • et al.
        An essential role for DeltaFosB in the nucleus accumbens in morphine action.
        Nat Neurosci. 2006; 9: 205-211
        • Lee K.W.
        • Kim Y.
        • Kim A.M.
        • Helmin K.
        • Nairn A.C.
        • Greengard P.
        Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens.
        Proc Natl Acad Sci U S A. 2006; 103: 3399-3404
        • Blendy J.A.
        • Maldonado R.
        Genetic analysis of drug addiction: The role of cAMP response element binding protein.
        J Mol Med. 1998; 76: 104-110
        • Nestler E.J.
        Molecular mechanisms of drug addiction.
        Neuropharmacology. 2004; 47: 24-32
        • Tanis K.Q.
        • Duman R.S.
        • Newton S.S.
        CREB binding and activity in brain: Regional specificity and induction by electroconvulsive seizure.
        Biol Psychiatry. 2007; 63: 710-720
        • Kumar A.
        • Choi K.H.
        • Renthal W.
        • Tsankova N.M.
        • Theobald D.E.
        • Truong H.T.
        • et al.
        Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum.
        Neuron. 2005; 48: 303-314
        • Graham D.L.
        • Edwards S.
        • Bachtell R.K.
        • Dileone R.J.
        • Rios M.
        • Self D.W.
        Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse.
        Nat Neurosci. 2007; 10: 1029-1037
        • Svenningsson P.
        • Nairn A.C.
        • Greengard P.
        DARPP-32 mediates the actions of multiple drugs of abuse.
        AAPS J. 2005; 7: E353-E360
        • Palmer A.A.
        • Verbitsky M.
        • Suresh R.
        • Kamens H.M.
        • Reed C.L.
        • Li N.
        • et al.
        Gene expression differences in mice divergently selected for methamphetamine sensitivity.
        Mamm Genome. 2005; 16: 291-305
        • Bogush A.
        • Pedrini S.
        • Pelta-Heller J.
        • Chan T.
        • Yang Q.
        • Mao Z.
        • et al.
        AKT and CDK5/p35 mediate brain-derived neurotrophic factor induction of DARPP-32 in medium size spiny neurons in vitro.
        J Biol Chem. 2007; 282: 7352-7359
        • Benavides D.R.
        • Bibb J.A.
        Role of Cdk5 in drug abuse and plasticity.
        Ann N Y Acad Sci. 2004; 1025: 335-344
        • Bibb J.A.
        • Chen J.
        • Taylor J.R.
        • Svenningsson P.
        • Nishi A.
        • Snyder G.L.
        • et al.
        Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5.
        Nature. 2001; 410: 376-380
        • Blochl A.
        • Sirrenberg C.
        Neurotrophins stimulate the release of dopamine from rat mesencephalic neurons via Trk and p75Lntr receptors.
        J Biol Chem. 1996; 271: 21100-21107
        • Berton O.
        • McClung C.A.
        • Dileone R.J.
        • Krishnan V.
        • Renthal W.
        • Russo S.J.
        • et al.
        Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress.
        Science. 2006; 311: 864-868
        • Nestler E.J.
        • Carlezon Jr, W.A.
        The mesolimbic dopamine reward circuit in depression.
        Biol Psychiatry. 2006; 59: 1151-1159
        • Ford C.P.
        • Beckstead M.J.
        • Williams J.T.
        Kappa opioid inhibition of somatodendritic dopamine inhibitory postsynaptic currents.
        J Neurophysiol. 2007; 97: 883-891
        • Nylander I.
        • Vlaskovska M.
        • Terenius L.
        Brain dynorphin and enkephalin systems in Fischer and Lewis rats: Effects of morphine tolerance and withdrawal.
        Brain Res. 1995; 683: 25-35
        • Nylander I.
        • Hyytia P.
        • Forsander O.
        • Terenius L.
        Differences between alcohol-preferring (AA) and alcohol-avoiding (ANA) rats in the prodynorphin and proenkephalin systems.
        Alcohol Clin Exp Res. 1994; 18: 1272-1279
        • Kreek M.J.
        Cocaine, dopamine and the endogenous opioid system.
        J Addict Dis. 1996; 15: 73-96
        • Carlezon Jr, W.A.
        • Duman R.S.
        • Nestler E.J.
        The many faces of CREB.
        Trends Neurosci. 2005; 28: 436-445
        • Dudman J.T.
        • Eaton M.E.
        • Rajadhyaksha A.
        • Macias W.
        • Taher M.
        • Barczak A.
        • et al.
        Dopamine D1 receptors mediate CREB phosphorylation via phosphorylation of the NMDA receptor at Ser897-NR1.
        J Neurochem. 2003; 87: 922-934
        • Self D.W.
        Regulation of drug-taking and -seeking behaviors by neuroadaptations in the mesolimbic dopamine system.
        Neuropharmacology. 2004; 47: 242-255
        • Beitner-Johnson D.
        • Nestler E.J.
        Morphine and cocaine exert common chronic actions on tyrosine hydroxylase in dopaminergic brain reward regions.
        J Neurochem. 1991; 57: 344-347
        • Lu L.
        • Grimm J.W.
        • Shaham Y.
        • Hope B.T.
        Molecular neuroadaptations in the accumbens and ventral tegmental area during the first 90 days of forced abstinence from cocaine self-administration in rats.
        J Neurochem. 2003; 85: 1604-1613
        • Shepard J.D.
        • Chuang D.T.
        • Shaham Y.
        • Morales M.
        Effect of methamphetamine self-administration on tyrosine hydroxylase and dopamine transporter levels in mesolimbic and nigrostriatal dopamine pathways of the rat.
        Psychopharmacology (Berl). 2006; 185: 505-513
        • Fulton S.
        • Pissios P.
        • Manchon R.P.
        • Stiles L.
        • Frank L.
        • Pothos E.N.
        • et al.
        Leptin regulation of the mesoaccumbens dopamine pathway.
        Neuron. 2006; 51: 811-822
        • Narita M.
        • Nagumo Y.
        • Miyatake M.
        • Ikegami D.
        • Kurahashi K.
        • Suzuki T.
        Implication of protein kinase C in the orexin-induced elevation of extracellular dopamine levels and its rewarding effect.
        Eur J Neurosci. 2007; 25: 1537-1545
        • Narita M.
        • Nagumo Y.
        • Hashimoto S.
        • Khotib J.
        • Miyatake M.
        • Sakurai T.
        • et al.
        Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine.
        J Neurosci. 2006; 26: 398-405
        • Borgland S.L.
        • Taha S.A.
        • Sarti F.
        • Fields H.L.
        • Bonci A.
        Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine.
        Neuron. 2006; 49: 589-601
        • Park E.S.
        • Yi S.J.
        • Kim J.S.
        • Lee H.S.
        • Lee I.S.
        • Seong J.K.
        • et al.
        Changes in orexin-A and neuropeptide Y expression in the hypothalamus of the fasted and high-fat diet fed rats.
        J Vet Sci. 2004; 5: 295-302
        • Wortley K.E.
        • Chang G.Q.
        • Davydova Z.
        • Leibowitz S.F.
        Peptides that regulate food intake: Orexin gene expression is increased during states of hypertriglyceridemia.
        Am J Physiol Regul Integr Comp Physiol. 2003; 284: R1454-R1465
        • Zheng H.
        • Corkern M.
        • Stoyanova I.
        • Patterson L.M.
        • Tian R.
        • Berthoud H.R.
        Peptides that regulate food intake: appetite-inducing accumbens manipulation activates hypothalamic orexin neurons and inhibits POMC neurons.
        Am J Physiol Regul Integr Comp Physiol. 2003; 284: R1436-R1444
        • Baldo B.A.
        • Gual-Bonilla L.
        • Sijapati K.
        • Daniel R.A.
        • Landry C.F.
        • Kelley A.E.
        Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABAA receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment.
        Eur J Neurosci. 2004; 19: 376-386
        • Harris G.C.
        • Wimmer M.
        • Aston-Jones G.
        A role for lateral hypothalamic orexin neurons in reward seeking.
        Nature. 2005; 437: 556-559