Advertisement
Archival Report| Volume 64, ISSUE 11, P941-950, December 01, 2008

ΔFosB-Mediated Alterations in Dopamine Signaling Are Normalized by a Palatable High-Fat Diet

      Background

      Sensitivity to reward has been implicated as a predisposing factor for behaviors related to drug abuse as well as overeating. However, the underlying mechanisms contributing to reward sensitivity are unknown. We hypothesized that a dysregulation in dopamine signaling might be an underlying cause of heightened reward sensitivity whereby rewarding stimuli could act to normalize the system.

      Methods

      We used a genetic mouse model of increased reward sensitivity, the ΔFosB-overexpressing mouse, to examine reward pathway changes in response to a palatable high-fat diet. Markers of reward signaling in these mice were examined both basally and following 6 weeks of palatable diet exposure. Mice were examined in a behavioral test following high-fat diet withdrawal to assess the vulnerability of this model to removal of rewarding stimuli.

      Results

      Our results demonstrate altered reward pathway activation along the nucleus accumbens-hypothalamic-ventral tegmental area circuitry resulting from overexpression of ΔFosB in the nucleus accumbens and striatal regions. Levels of phosphorylated cyclic adenosine monophosphate (cAMP) response element binding protein (pCREB), brain-derived neurotrophic factor (BDNF), and dopamine and cyclic adenosine monophosphate regulated phosphoprotein with a molecular mass of 32 kDa (DARPP-32) in the nucleus accumbens were reduced in ΔFosB mice, suggestive of reduced dopamine signaling. Six weeks of high-fat diet exposure completely ameliorated these differences, revealing the potent rewarding capacity of a palatable diet. ΔFosB mice also showed a significant increase in locomotor activity and anxiety-related responses 24 hours following high-fat withdrawal.

      Conclusions

      These results establish an underlying sensitivity to changes in reward related to dysregulation of ΔFosB and dopamine signaling that can be normalized with palatable diets and may be a predisposing phenotype in some forms of obesity.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wadden T.A.
        • Berkowitz R.I.
        • Womble L.G.
        • Sarwer D.B.
        • Phelan S.
        • Cato R.K.
        • et al.
        Randomized trial of lifestyle modification and pharmacotherapy for obesity.
        N Engl J Med. 2005; 353: 2111-2120
        • Blendy J.A.
        • Strasser A.
        • Walters C.L.
        • Perkins K.A.
        • Patterson F.
        • Berkowitz R.
        • Lerman C.
        Reduced nicotine reward in obesity: Cross-comparison in human and mouse.
        Psychopharmacology (Berl). 2005; 180: 306-315
        • Franken I.H.
        • Muris P.
        Individual differences in reward sensitivity are related to food craving and relative body weight in healthy women.
        Appetite. 2005; 45: 198-201
        • Kelley A.E.
        • Berridge K.C.
        The neuroscience of natural rewards: Relevance to addictive drugs.
        J Neurosci. 2002; 22: 3306-3311
        • Cagniard B.
        • Balsam P.D.
        • Brunner D.
        • Zhuang X.
        Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward.
        Neuropsychopharmacology. 2006; 31: 1362-1370
        • Liang N.C.
        • Hajnal A.
        • Norgren R.
        Sham feeding corn oil increases accumbens dopamine in the rat.
        Am J Physiol Regul Integr Comp Physiol. 2006; 291: R1236-R1239
        • Mendoza J.
        • Angeles-Castellanos M.
        • Escobar C.
        Entrainment by a palatable meal induces food-anticipatory activity and c-Fos expression in reward-related areas of the brain.
        Neuroscience. 2005; 133: 293-303
        • Schroeder B.E.
        • Binzak J.M.
        • Kelley A.E.
        A common profile of prefrontal cortical activation following exposure to nicotine- or chocolate-associated contextual cues.
        Neuroscience. 2001; 105: 535-545
        • Nestler E.J.
        • Barrot M.
        • Self D.W.
        DeltaFosB: A sustained molecular switch for addiction.
        Proc Natl Acad Sci U S A. 2001; 98: 11042-11046
        • Teegarden S.L.
        • Bale T.L.
        Decreases in dietary preference produce increased emotionality and risk for dietary relapse.
        Biol Psychiatry. 2007; 61: 1021-1029
        • Olausson P.
        • Jentsch J.D.
        • Tronson N.
        • Nestler E.J.
        • Taylor J.R.
        dFosB in the nucleus accumbens regulates food-reinforced instrumental behavior and motivation.
        J Neurosci. 2006; 26: 9196-9204
        • Chen J.
        • Kelz M.B.
        • Zeng G.
        • Sakai N.
        • Steffen C.
        • Shockett P.E.
        • et al.
        Transgenic animals with inducible, targeted gene expression in brain.
        Mol Pharmacol. 1998; 54: 495-503
        • Kelz M.B.
        • Chen J.
        • Carlezon Jr, W.A.
        • Whisler K.
        • Gilden L.
        • Beckmann A.M.
        • et al.
        Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine.
        Nature. 1999; 401: 272-276
        • Bale T.L.
        • Dorsa D.M.
        Sex differences in and effects of estrogen on oxytocin receptor messenger ribonucleic acid expression in the ventromedial hypothalamus.
        Endocrinology. 1995; 136: 27-32
        • Avena N.M.
        • Long K.A.
        • Hoebel B.G.
        Sugar-dependent rats show enhanced responding for sugar after abstinence: Evidence of a sugar deprivation effect.
        Physiol Behav. 2005; 84: 359-362
        • Will M.J.
        • Franzblau E.B.
        • Kelley A.E.
        Nucleus accumbens mu-opioids regulate intake of a high-fat diet via activation of a distributed brain network.
        J Neurosci. 2003; 23: 2882-2888
        • Zheng H.
        • Patterson L.M.
        • Berthoud H.R.
        Orexin signaling in the ventral tegmental area is required for high-fat appetite induced by opioid stimulation of the nucleus accumbens.
        J Neurosci. 2007; 27: 11075-11082
        • Hommel J.D.
        • Trinko R.
        • Sears R.M.
        • Georgescu D.
        • Liu Z.W.
        • Gao X.B.
        • et al.
        Leptin receptor signaling in midbrain dopamine neurons regulates feeding.
        Neuron. 2006; 51: 801-810
        • Colby C.R.
        • Whisler K.
        • Steffen C.
        • Nestler E.J.
        • Self D.W.
        Striatal cell type-specific overexpression of DeltaFosB enhances incentive for cocaine.
        J Neurosci. 2003; 23: 2488-2493
        • Zachariou V.
        • Bolanos C.A.
        • Selley D.E.
        • Theobald D.
        • Cassidy M.P.
        • Kelz M.B.
        • et al.
        An essential role for DeltaFosB in the nucleus accumbens in morphine action.
        Nat Neurosci. 2006; 9: 205-211
        • Lee K.W.
        • Kim Y.
        • Kim A.M.
        • Helmin K.
        • Nairn A.C.
        • Greengard P.
        Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens.
        Proc Natl Acad Sci U S A. 2006; 103: 3399-3404
        • Blendy J.A.
        • Maldonado R.
        Genetic analysis of drug addiction: The role of cAMP response element binding protein.
        J Mol Med. 1998; 76: 104-110
        • Nestler E.J.
        Molecular mechanisms of drug addiction.
        Neuropharmacology. 2004; 47: 24-32
        • Tanis K.Q.
        • Duman R.S.
        • Newton S.S.
        CREB binding and activity in brain: Regional specificity and induction by electroconvulsive seizure.
        Biol Psychiatry. 2007; 63: 710-720
        • Kumar A.
        • Choi K.H.
        • Renthal W.
        • Tsankova N.M.
        • Theobald D.E.
        • Truong H.T.
        • et al.
        Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum.
        Neuron. 2005; 48: 303-314
        • Graham D.L.
        • Edwards S.
        • Bachtell R.K.
        • Dileone R.J.
        • Rios M.
        • Self D.W.
        Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse.
        Nat Neurosci. 2007; 10: 1029-1037
        • Svenningsson P.
        • Nairn A.C.
        • Greengard P.
        DARPP-32 mediates the actions of multiple drugs of abuse.
        AAPS J. 2005; 7: E353-E360
        • Palmer A.A.
        • Verbitsky M.
        • Suresh R.
        • Kamens H.M.
        • Reed C.L.
        • Li N.
        • et al.
        Gene expression differences in mice divergently selected for methamphetamine sensitivity.
        Mamm Genome. 2005; 16: 291-305
        • Bogush A.
        • Pedrini S.
        • Pelta-Heller J.
        • Chan T.
        • Yang Q.
        • Mao Z.
        • et al.
        AKT and CDK5/p35 mediate brain-derived neurotrophic factor induction of DARPP-32 in medium size spiny neurons in vitro.
        J Biol Chem. 2007; 282: 7352-7359
        • Benavides D.R.
        • Bibb J.A.
        Role of Cdk5 in drug abuse and plasticity.
        Ann N Y Acad Sci. 2004; 1025: 335-344
        • Bibb J.A.
        • Chen J.
        • Taylor J.R.
        • Svenningsson P.
        • Nishi A.
        • Snyder G.L.
        • et al.
        Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5.
        Nature. 2001; 410: 376-380
        • Blochl A.
        • Sirrenberg C.
        Neurotrophins stimulate the release of dopamine from rat mesencephalic neurons via Trk and p75Lntr receptors.
        J Biol Chem. 1996; 271: 21100-21107
        • Berton O.
        • McClung C.A.
        • Dileone R.J.
        • Krishnan V.
        • Renthal W.
        • Russo S.J.
        • et al.
        Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress.
        Science. 2006; 311: 864-868
        • Nestler E.J.
        • Carlezon Jr, W.A.
        The mesolimbic dopamine reward circuit in depression.
        Biol Psychiatry. 2006; 59: 1151-1159
        • Ford C.P.
        • Beckstead M.J.
        • Williams J.T.
        Kappa opioid inhibition of somatodendritic dopamine inhibitory postsynaptic currents.
        J Neurophysiol. 2007; 97: 883-891
        • Nylander I.
        • Vlaskovska M.
        • Terenius L.
        Brain dynorphin and enkephalin systems in Fischer and Lewis rats: Effects of morphine tolerance and withdrawal.
        Brain Res. 1995; 683: 25-35
        • Nylander I.
        • Hyytia P.
        • Forsander O.
        • Terenius L.
        Differences between alcohol-preferring (AA) and alcohol-avoiding (ANA) rats in the prodynorphin and proenkephalin systems.
        Alcohol Clin Exp Res. 1994; 18: 1272-1279
        • Kreek M.J.
        Cocaine, dopamine and the endogenous opioid system.
        J Addict Dis. 1996; 15: 73-96
        • Carlezon Jr, W.A.
        • Duman R.S.
        • Nestler E.J.
        The many faces of CREB.
        Trends Neurosci. 2005; 28: 436-445
        • Dudman J.T.
        • Eaton M.E.
        • Rajadhyaksha A.
        • Macias W.
        • Taher M.
        • Barczak A.
        • et al.
        Dopamine D1 receptors mediate CREB phosphorylation via phosphorylation of the NMDA receptor at Ser897-NR1.
        J Neurochem. 2003; 87: 922-934
        • Self D.W.
        Regulation of drug-taking and -seeking behaviors by neuroadaptations in the mesolimbic dopamine system.
        Neuropharmacology. 2004; 47: 242-255
        • Beitner-Johnson D.
        • Nestler E.J.
        Morphine and cocaine exert common chronic actions on tyrosine hydroxylase in dopaminergic brain reward regions.
        J Neurochem. 1991; 57: 344-347
        • Lu L.
        • Grimm J.W.
        • Shaham Y.
        • Hope B.T.
        Molecular neuroadaptations in the accumbens and ventral tegmental area during the first 90 days of forced abstinence from cocaine self-administration in rats.
        J Neurochem. 2003; 85: 1604-1613
        • Shepard J.D.
        • Chuang D.T.
        • Shaham Y.
        • Morales M.
        Effect of methamphetamine self-administration on tyrosine hydroxylase and dopamine transporter levels in mesolimbic and nigrostriatal dopamine pathways of the rat.
        Psychopharmacology (Berl). 2006; 185: 505-513
        • Fulton S.
        • Pissios P.
        • Manchon R.P.
        • Stiles L.
        • Frank L.
        • Pothos E.N.
        • et al.
        Leptin regulation of the mesoaccumbens dopamine pathway.
        Neuron. 2006; 51: 811-822
        • Narita M.
        • Nagumo Y.
        • Miyatake M.
        • Ikegami D.
        • Kurahashi K.
        • Suzuki T.
        Implication of protein kinase C in the orexin-induced elevation of extracellular dopamine levels and its rewarding effect.
        Eur J Neurosci. 2007; 25: 1537-1545
        • Narita M.
        • Nagumo Y.
        • Hashimoto S.
        • Khotib J.
        • Miyatake M.
        • Sakurai T.
        • et al.
        Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine.
        J Neurosci. 2006; 26: 398-405
        • Borgland S.L.
        • Taha S.A.
        • Sarti F.
        • Fields H.L.
        • Bonci A.
        Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine.
        Neuron. 2006; 49: 589-601
        • Park E.S.
        • Yi S.J.
        • Kim J.S.
        • Lee H.S.
        • Lee I.S.
        • Seong J.K.
        • et al.
        Changes in orexin-A and neuropeptide Y expression in the hypothalamus of the fasted and high-fat diet fed rats.
        J Vet Sci. 2004; 5: 295-302
        • Wortley K.E.
        • Chang G.Q.
        • Davydova Z.
        • Leibowitz S.F.
        Peptides that regulate food intake: Orexin gene expression is increased during states of hypertriglyceridemia.
        Am J Physiol Regul Integr Comp Physiol. 2003; 284: R1454-R1465
        • Zheng H.
        • Corkern M.
        • Stoyanova I.
        • Patterson L.M.
        • Tian R.
        • Berthoud H.R.
        Peptides that regulate food intake: appetite-inducing accumbens manipulation activates hypothalamic orexin neurons and inhibits POMC neurons.
        Am J Physiol Regul Integr Comp Physiol. 2003; 284: R1436-R1444
        • Baldo B.A.
        • Gual-Bonilla L.
        • Sijapati K.
        • Daniel R.A.
        • Landry C.F.
        • Kelley A.E.
        Activation of a subpopulation of orexin/hypocretin-containing hypothalamic neurons by GABAA receptor-mediated inhibition of the nucleus accumbens shell, but not by exposure to a novel environment.
        Eur J Neurosci. 2004; 19: 376-386
        • Harris G.C.
        • Wimmer M.
        • Aston-Jones G.
        A role for lateral hypothalamic orexin neurons in reward seeking.
        Nature. 2005; 437: 556-559