Advertisement

Abnormal Glutamatergic Neurotransmission and Neuronal-Glial Interactions in Acute Mania

      Background

      At excitatory synapses, glutamate released from neurons is taken up by glial cells and converted to glutamine, which is cycled back to neurons. Alterations in this system are believed to play a role in the pathophysiology of bipolar disorder, but they have not been characterized in vivo. We examined the glutamine/glutamate ratio and levels of other metabolites in acute mania and schizophrenia in this exploratory study.

      Methods

      Data were obtained from 2 × 2 × 2 cm voxels in the anterior cingulate cortex (ACC) and parieto-occipital cortex (POC) using two-dimensional J-resolved proton magnetic resonance spectroscopy at 4 Tesla and analyzed using LCModel. Fifteen bipolar disorder patients with acute mania and 17 schizophrenia patients with acute psychosis were recruited from an inpatient unit; 21 matched healthy control subjects were also studied. Glutamine/glutamate ratio and N-acetylaspartate, creatine, choline, and myo-inositol levels were evaluated in a repeated measures design. Medication effects and relationship to demographic and clinical variables were analyzed.

      Results

      Glutamine/glutamate ratio was significantly higher in ACC and POC in bipolar disorder, but not schizophrenia, compared with healthy control subjects. N-acetylaspartate was significantly lower in the ACC in schizophrenia. Patients on and off lithium, anticonvulsants, or benzodiazepines had similar glutamine/glutamate ratios.

      Conclusions

      The elevated glutamine/glutamate ratio is consistent with glutamatergic overactivity and/or defective neuronal-glial coupling in acute mania, although medication effects cannot be ruled out. Abnormalities in glutamatergic neurotransmission and glial cell function in bipolar disorder may represent targets for novel therapeutic interventions.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kessler R.C.
        • Rubinow D.R.
        • Holmes C.
        • Abelson J.M.
        • Zhao S.
        The epidemiology of DSM-III-R bipolar I disorder in a general population survey.
        Psychol Med. 1997; 27: 1079-1089
        • World Health Organization
        Global Burden of Disease.
        World Health Organization, Geneva2002
        • Öngür D.
        • Drevets W.C.
        • Price J.L.
        Glial reduction in the subgenual prefrontal cortex in mood disorders.
        Proc Natl Acad Sci U S A. 1998; 95: 13290-13295
        • Rajkowska G.
        Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells.
        Biol Psychiatry. 2000; 48: 766-777
        • Blumberg H.P.
        • Krystal J.H.
        • Bansal R.
        • Martin A.
        • Dziura J.
        • Durkin K.
        • et al.
        Age, rapid-cycling, and pharmacotherapy effects on ventral prefrontal cortex in bipolar disorder: A cross-sectional study.
        Biol Psychiatry. 2006; 59: 611-618
        • Drevets W.C.
        • Price J.L.
        • Simpson J.R.
        • Todd R.D.
        • Reich T.
        • Vannier M.
        • et al.
        Subgenual prefrontal cortex abnormalities in mood disorders.
        Nature. 1997; 386: 824-827
        • Drevets W.C.
        Neuroimaging studies of mood disorders.
        Biol Psychiatry. 2000; 48: 813-829
        • Blumberg H.P.
        • Leung H.C.
        • Skudlarski P.
        • Lacadie C.M.
        • Fredericks C.A.
        • Harris B.C.
        • et al.
        A functional magnetic resonance imaging study of bipolar disorder: State- and trait-related dysfunction in ventral prefrontal cortices.
        Arch Gen Psychiatry. 2003; 60: 601-609
        • Hattori E.
        • Liu C.
        • Badner J.A.
        • Bonner T.I.
        • Christian S.L.
        • Maheshwari M.
        • et al.
        Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series.
        Am J Hum Genet. 2003; 72: 1131-1140
        • Craddock N.
        • O'Donovan M.C.
        • Owen M.J.
        The genetics of schizophrenia and bipolar disorder: Dissecting psychosis.
        J Med Genet. 2005; 42: 193-204
        • Zarate Jr, C.A.
        • Singh J.
        • Manji H.K.
        Cellular plasticity cascades: Targets for the development of novel therapeutics for bipolar disorder.
        Biol Psychiatry. 2006; 59: 1006-1020
        • Rothman D.L.
        • Behar K.L.
        • Hyder F.
        • Shulman R.G.
        In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: Implications for brain function.
        Annu Rev Physiol. 2003; 65: 401-427
        • Pellerin L.
        • Magistretti P.J.
        Neuroscience.
        Science. 2004; 305: 50-52
        • Igarashi H.
        • Kwee I.L.
        • Nakada T.
        • Katayama Y.
        • Terashi A.
        1H magnetic resonance spectroscopic imaging of permanent focal cerebral ischemia in rat: Longitudinal metabolic changes in ischemic core and rim.
        Brain Res. 2001; 907: 208-221
        • Mlynarik V.
        • Kohler I.
        • Gambarota G.
        • Vaslin A.
        • Clarke P.G.
        • Gruetter R.
        Quantitative proton spectroscopic imaging of the neurochemical profile in rat brain with microliter resolution at ultra-short echo times.
        Magn Reson Med. 2008; 59: 52-58
        • Sanacora G.
        • Rothman D.L.
        • Mason G.
        • Krystal J.H.
        Clinical studies implementing glutamate neurotransmission in mood disorders.
        Ann N Y Acad Sci. 2003; 1003: 292-308
        • Kugaya A.
        • Sanacora G.
        Beyond monoamines: Glutamatergic function in mood disorders.
        CNS Spectr. 2005; 10: 808-819
        • Berton O.
        • Nestler E.J.
        New approaches to antidepressant drug discovery: Beyond monoamines.
        Nat Rev Neurosci. 2006; 7: 137-151
        • Lan M.J.
        • McLoughlin G.A.
        • Griffin J.L.
        • Tsang T.M.
        • Huang J.T.
        • Yuan P.
        • et al.
        Metabonomic analysis identifies molecular changes associated with the pathophysiology and drug treatment of bipolar disorder.
        Mol Psychiatry. 2008; ([published online ahead of print February 5])
        • Govindaraju V.
        • Young K.
        • Maudsley A.A.
        Proton NMR chemical shifts and coupling constants for brain metabolites.
        NMR Biomed. 2000; 13: 129-153
        • Auer D.P.
        • Putz B.
        • Kraft E.
        • Lipinski B.
        • Schill J.
        • Holsboer F.
        Reduced glutamate in the anterior cingulate cortex in depression: An in vivo proton magnetic resonance spectroscopy study.
        Biol Psychiatry. 2000; 47: 305-313
        • Hasler G.
        • van der Veen J.W.
        • Tumonis T.
        • Meyers N.
        • Shen J.
        • Drevets W.C.
        Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy.
        Arch Gen Psychiatry. 2007; 64: 193-200
        • Mirza Y.
        • Tang J.
        • Russell A.
        • Banerjee S.P.
        • Bhandari R.
        • Ivey J.
        • et al.
        Reduced anterior cingulate cortex glutamatergic concentrations in childhood major depression.
        J Am Acad Child Adolesc Psychiatry. 2004; 43: 341-348
        • Michael N.
        • Erfurth A.
        • Ohrmann P.
        • Gossling M.
        • Arolt V.
        • Heindel W.
        • et al.
        Acute mania is accompanied by elevated glutamate/glutamine levels within the left dorsolateral prefrontal cortex.
        Psychopharmacology (Berl). 2003; 168: 344-346
        • Cecil K.M.
        • DelBello M.P.
        • Morey R.
        • Strakowski S.M.
        Frontal lobe differences in bipolar disorder as determined by proton MR spectroscopy.
        Bipolar Disord. 2002; 4: 357-365
        • Frye M.A.
        • Watzl J.
        • Banakar S.
        • O'Neill J.
        • Mintz J.
        • Davanzo P.
        • et al.
        Increased anterior cingulate/medial prefrontal cortical glutamate and creatine in bipolar depression.
        Neuropsychopharmacology. 2007; 32: 2490-2499
        • Dager S.R.
        • Friedman S.D.
        • Parow A.
        • Demopulos C.
        • Stoll A.L.
        • Lyoo I.K.
        • et al.
        Brain metabolic alterations in medication-free patients with bipolar disorder.
        Arch Gen Psychiatry. 2004; 61: 450-458
        • Bhagwagar Z.
        • Wylezinska M.
        • Jezzard P.
        • Evans J.
        • Ashworth F.
        • Sule A.
        • et al.
        Reduction in occipital cortex gamma-aminobutyric acid concentrations in medication-free recovered unipolar depressed and bipolar subjects.
        Biol Psychiatry. 2007; 61: 806-812
        • Moore C.M.
        • Frazier J.A.
        • Glod C.A.
        • Breeze J.L.
        • Dieterich M.
        • Finn C.T.
        • et al.
        Glutamine and glutamate levels in children and adolescents with bipolar disorder: A 4.0-T proton magnetic resonance spectroscopy study of the anterior cingulate cortex.
        J Am Acad Child Adolesc Psychiatry. 2007; 46: 524-534
        • Sanacora G.
        • Gueorguieva R.
        • Epperson C.N.
        • Wu Y.T.
        • Appel M.
        • Rothman D.L.
        • et al.
        Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression.
        Arch Gen Psychiatry. 2004; 61: 705-713
        • Goff D.C.
        • Coyle J.T.
        The emerging role of glutamate in the pathophysiology and treatment of schizophrenia.
        Am J Psychiatry. 2001; 158: 1367-1377
        • Theberge J.
        • Bartha R.
        • Drost D.J.
        • Menon R.S.
        • Malla A.
        • Takhar J.
        • et al.
        Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers.
        Am J Psychiatry. 2002; 159: 1944-1946
        • Theberge J.
        • Al-Semaan Y.
        • Williamson P.C.
        • Menon R.S.
        • Neufeld R.W.
        • Rajakumar N.
        • et al.
        Glutamate and glutamine in the anterior cingulate and thalamus of medicated patients with chronic schizophrenia and healthy comparison subjects measured with 4.0-T proton MRS.
        Am J Psychiatry. 2003; 160: 2231-2233
        • Ryner L.N.
        • Sorenson J.A.
        • Thomas M.A.
        Localized 2D J-resolved 1H MR spectroscopy: Strong coupling effects in vitro and in vivo.
        Magn Reson Imaging. 1995; 13: 853-869
        • Ke Y.
        • Cohen B.M.
        • Bang J.Y.
        • Yang M.
        • Renshaw P.F.
        Assessment of GABA concentration in human brain using two-dimensional proton magnetic resonance spectroscopy.
        Psychiatry Res. 2000; 100: 169-178
        • Schulte R.F.
        • Boesiger P.
        ProFit: Two-dimensional prior-knowledge fitting of J-resolved spectra.
        NMR Biomed. 2006; 19: 255-263
        • Phillips M.L.
        • Drevets W.C.
        • Rauch S.L.
        • Lane R.
        Neurobiology of emotion perception II: Implications for major psychiatric disorders.
        Biol Psychiatry. 2003; 54: 515-528
        • Strakowski S.M.
        • Delbello M.P.
        • Adler C.M.
        The functional neuroanatomy of bipolar disorder: A review of neuroimaging findings.
        Mol Psychiatry. 2005; 10: 105-116
        • Jensen J.E.
        • Frederick B.D.
        • Wang L.
        • Brown J.
        • Renshaw P.F.
        Two-dimensional, J-resolved spectroscopic imaging of GABA at 4 Tesla in the human brain.
        Magn Reson Med. 2005; 54: 783-788
        • First M.B.
        • Spitzer R.L.
        • Gibbon M.
        • Williams J.B.W.
        Structured Clinical Interview for DSM-IV Axis I Disorders.
        New York State Psychiatric Institute, Biometrics Research, New York1995
        • Woods S.W.
        Chlorpromazine equivalent doses for the newer atypical antipsychotics.
        J Clin Psychiatry. 2003; 64: 663-667
        • Ogg R.J.
        • Kingsley P.B.
        • Taylor J.S.
        WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy.
        J Magn Reson B. 1994; 104: 1-10
        • Provencher S.W.
        Estimation of metabolite concentrations from localized in vivo proton NMR spectra.
        Magn Reson Med. 1993; 30: 672-679
        • Smith S.A.
        • Levante T.O.
        • Meier B.H.
        • Ernst R.R.
        Computer simulations in magnetic resonance.
        J Magn Reson A. 1994; 106: 75-105
        • Provencher S.W.
        Automatic quantitation of localized in vivo 1H spectra with LCModel.
        NMR Biomed. 2001; 14: 260-264
        • Posse S.
        • Otazo R.
        • Caprihan A.
        • Bustillo J.
        • Chen H.
        • Henry P.G.
        • et al.
        Proton echo-planar spectroscopic imaging of J-coupled resonances in human brain at 3 and 4 Tesla.
        Magn Reson Med. 2007; 58: 236-244
        • Hetherington H.P.
        • Mason G.F.
        • Pan J.W.
        • Ponder S.L.
        • Vaughan J.T.
        • Twieg D.B.
        • et al.
        Evaluation of cerebral gray and white matter metabolite differences by spectroscopic imaging at 4.1T.
        Magn Reson Med. 1994; 32: 565-571
        • Wang Y.
        • Li S.J.
        Differentiation of metabolic concentrations between gray matter and white matter of human brain by in vivo 1H magnetic resonance spectroscopy.
        Magn Reson Med. 1998; 39: 28-33
        • Kishimoto H.
        • Takazu O.
        • Ohno S.
        • Yamaguchi T.
        • Fujita H.
        • Kuwahara H.
        • et al.
        11C-glucose metabolism in manic and depressed patients.
        Psychiatry Res. 1987; 22: 81-88
        • Cotter D.R.
        • Pariante C.M.
        • Everall I.P.
        Glial cell abnormalities in major psychiatric disorders: The evidence and implications.
        Brain Res Bull. 2001; 55: 585-595
        • Hertz L.
        • Zielke H.R.
        Astrocytic control of glutamatergic activity: Astrocytes as stars of the show.
        Trends Neurosci. 2004; 27: 735-743
        • Varoqui H.
        • Zhu H.
        • Yao D.
        • Ming H.
        • Erickson J.D.
        Cloning and functional identification of a neuronal glutamine transporter.
        J Biol Chem. 2000; 275: 4049-4054
        • Schoepp D.
        New directions in the treatment of schizophrenia: Modulators of mGlu2 and/or mGlu3 receptors.
        Neuropsychopharmacology. 2006; 31: S25
        • Bertolino A.
        • Callicott J.H.
        • Elman I.
        • Mattay V.S.
        • Tedeschi G.
        • Frank J.A.
        • et al.
        Regionally specific neuronal pathology in untreated patients with schizophrenia: A proton magnetic resonance spectroscopic imaging study.
        Biol Psychiatry. 1998; 43: 641-648
        • Bertolino A.
        • Frye M.
        • Callicott J.H.
        • Mattay V.S.
        • Rakow R.
        • Shelton-Repella J.
        • et al.
        Neuronal pathology in the hippocampal area of patients with bipolar disorder: A study with proton magnetic resonance spectroscopic imaging.
        Biol Psychiatry. 2003; 53: 906-913
        • Lyoo I.K.
        • Renshaw P.F.
        Magnetic resonance spectroscopy: Current and future applications in psychiatric research.
        Biol Psychiatry. 2002; 51: 195-207
        • Yildiz-Yesiloglu A.
        • Ankerst D.P.
        Neurochemical alterations of the brain in bipolar disorder and their implications for pathophysiology: A systematic review of the in vivo proton magnetic resonance spectroscopy findings.
        Prog Neuropsychopharmacol Biol Psychiatry. 2006; 30: 969-995
        • Stork C.
        • Renshaw P.F.
        Mitochondrial dysfunction in bipolar disorder: Evidence from magnetic resonance spectroscopy research.
        Mol Psychiatry. 2005; 10: 900-919
        • Schirmer T.
        • Auer D.P.
        On the reliability of quantitative clinical magnetic resonance spectroscopy of the human brain.
        NMR Biomed. 2000; 13: 28-36
        • Geurts J.J.
        • Barkhof F.
        • Castelijns J.A.
        • Uitdehaag B.M.
        • Polman C.H.
        • Pouwels P.J.
        Quantitative 1H-MRS of healthy human cortex, hippocampus, and thalamus: Metabolite concentrations, quantification precision, and reproducibility.
        J Magn Reson Imaging. 2004; 20: 366-371
        • Bartha R.
        • Drost D.J.
        • Menon R.S.
        • Williamson P.C.
        Comparison of the quantification precision of human short echo time (1)H spectroscopy at 1.5 and 4.0 Tesla.
        Magn Reson Med. 2000; 44: 185-192
        • Provencher S.W.
        LCModel & LCMgui User's Manual.
        Stephen Provencher, Oakville, Ontario, Canada2005
        • Schubert F.
        • Gallinat J.
        • Seifert F.
        • Rinneberg H.
        Glutamate concentrations in human brain using single voxel proton magnetic resonance spectroscopy at 3 Tesla.
        Neuroimage. 2004; 21: 1762-1771
        • Du J.
        • Suzuki K.
        • Wei Y.
        • Wang Y.
        • Blumenthal R.
        • Chen Z.
        • et al.
        The anticonvulsants lamotrigine, riluzole, and valproate differentially regulate AMPA receptor membrane localization: Relationship to clinical effects in mood disorders.
        Neuropsychopharmacology. 2007; 32: 793-802
        • Friedman S.D.
        • Dager S.R.
        • Parow A.
        • Hirashima F.
        • Demopulos C.
        • Stoll A.L.
        • et al.
        Lithium and valproic acid treatment effects on brain chemistry in bipolar disorder.
        Biol Psychiatry. 2004; 56: 340-348
        • Dixon J.F.
        • Hokin L.E.
        The antibipolar drug valproate mimics lithium in stimulating glutamate release and inositol 1,4,5-trisphosphate accumulation in brain cortex slices but not accumulation of inositol monophosphates and bisphosphates.
        Proc Natl Acad Sci U S A. 1997; 94: 4757-4760
        • Dixon J.F.
        • Hokin L.E.
        Lithium acutely inhibits and chronically up-regulates and stabilizes glutamate uptake by presynaptic nerve endings in mouse cerebral cortex.
        Proc Natl Acad Sci U S A. 1998; 95: 8363-8368
        • Zarate Jr, C.A.
        • Du J.
        • Quiroz J.
        • Gray N.A.
        • Denicoff K.D.
        • Singh J.
        • et al.
        Regulation of cellular plasticity cascades in the pathophysiology and treatment of mood disorders: Role of the glutamatergic system.
        Ann N Y Acad Sci. 2003; 1003: 273-291
        • Frey B.N.
        • Stanley J.A.
        • Nery F.G.
        • Monkul E.S.
        • Nicoletti M.A.
        • Chen H.H.
        • et al.
        Abnormal cellular energy and phospholipid metabolism in the left dorsolateral prefrontal cortex of medication-free individuals with bipolar disorder: An in vivo 1H MRS study.
        Bipolar Disord. 2007; 9: 119-127
        • Theberge J.
        • Williamson K.E.
        • Aoyama N.
        • Drost D.J.
        • Manchanda R.
        • Malla A.K.
        • et al.
        Longitudinal grey-matter and glutamatergic losses in first-episode schizophrenia.
        Br J Psychiatry. 2007; 191: 325-334
        • Barker P.B.
        • Soher B.J.
        • Blackband S.J.
        • Chatham J.C.
        • Mathews V.P.
        • Bryan R.N.
        Quantitation of proton NMR spectra of the human brain using tissue water as an internal concentration reference.
        NMR Biomed. 1993; 6: 89-94
        • Benes F.M.
        • Berretta S.
        GABAergic interneurons: Implications for understanding schizophrenia and bipolar disorder.
        Neuropsychopharmacology. 2001; 25: 1-27
        • Heckers S.
        • Stone D.J.
        • Walsh J.
        • Shick J.F.
        • Koul P.
        • Benes F.M.
        Hippocampal GAD65 and GAD67 mRNA expression in schizophrenia and bipolar disorder.
        Schizophr Res. 2001; 49: 61