Advertisement
Archival Report| Volume 64, ISSUE 11, P966-973, December 01, 2008

Download started.

Ok

Neural Basis of Δ-9-Tetrahydrocannabinol and Cannabidiol: Effects During Response Inhibition

      Background

      This study examined the effect of Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) on brain activation during a motor inhibition task.

      Methods

      Functional magnetic resonance imaging and behavioural measures were recorded while 15 healthy volunteers performed a Go/No-Go task following administration of either THC or CBD or placebo in a double-blind, pseudo-randomized, placebo-controlled repeated measures within-subject design.

      Results

      Relative to placebo, THC attenuated activation in the right inferior frontal and the anterior cingulate gyrus. In contrast, CBD deactivated the left temporal cortex and insula. These effects were not related to changes in anxiety, intoxication, sedation, and psychotic symptoms.

      Conclusions

      These data suggest that THC attenuates the engagement of brain regions that mediate response inhibition. CBD modulated function in regions not usually implicated in response inhibition.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Monshouwer K.
        • Smit F.
        • de G.R.
        • van O.J.
        • Vollebergh W.
        First cannabis use: Does onset shift to younger ages?.
        Addiction. 2005; 100: 963-970
        • Rogers R.D.
        • Robbins T.W.
        Investigating the neurocognitive deficits associated with chronic drug misuse.
        Curr Opin Neurobiol. 2001; 11: 250-257
        • Solowij N.
        • Stephens R.S.
        • Roffman R.A.
        • Babor T.
        • Kadden R.
        • Miller M.
        • et al.
        Cognitive functioning of long-term heavy cannabis users seeking treatment.
        JAMA. 2002; 287: 1123-1131
        • Pope Jr, H.G.
        • Gruber A.J.
        • Hudson J.I.
        • Cohane G.
        • Huestis M.A.
        • Yurgelun-Todd D.
        Early-onset cannabis use and cognitive deficits: What is the nature of the association?.
        Drug Alcohol Depend. 2003; 69: 303-310
        • Hall W.
        • Solowij N.
        Adverse effects of cannabis.
        Lancet. 1998; 352: 1611-1616
        • McDonald J.
        • Schleifer L.
        • Richards J.B.
        • de Wit H.
        Effects of THC on behavioral measures of impulsivity in humans.
        Neuropsychopharmacology. 2003; 28: 1356-1365
        • Hall W.
        Reducing the harms caused by cannabis use: The policy debate in Australia.
        Drug Alcohol Depend. 2001; 62: 163-174
        • Ramaekers J.G.
        • Moeller M.R.
        • van R.P.
        • Theunissen E.L.
        • Schneider E.
        • Kauert G.
        Cognition and motor control as a function of Delta9-THC concentration in serum and oral fluid: Limits of impairment.
        Drug Alcohol Depend. 2006; 85: 114-122
        • McGee R.
        • Williams S.
        • Poulton R.
        • Moffitt T.
        A longitudinal study of cannabis use and mental health from adolescence to early adulthood.
        Addiction. 2000; 95: 491-503
        • Hoaken P.N.
        • Stewart S.H.
        Drugs of abuse and the elicitation of human aggressive behavior.
        Addict Behav. 2003; 28: 1533-1554
        • Grotenhermen F.
        Cannabinoids.
        Curr Drug Targets CNS Neurol Disord. 2005; 4: 507-530
        • Eggan S.M.
        • Lewis D.A.
        Immunocytochemical distribution of the cannabinoid CB1 receptor in the primate neocortex: A regional and laminar analysis.
        Cereb Cortex. 2007; 17: 175-191
        • Iversen L.
        Cannabis and the brain.
        Brain. 2003; 126: 1252-1270
        • Pertwee R.G.
        Evidence for the presence of CB1 cannabinoid receptors on peripheral neurones and for the existence of neuronal non-CB1 cannabinoid receptors.
        Life Sci. 1999; 65: 597-605
        • Block R.I.
        • O'Leary D.S.
        • Ehrhardt J.C.
        • Augustinack J.C.
        • Ghoneim M.M.
        • Arndt S.
        • et al.
        Effects of frequent marijuana use on brain tissue volume and composition.
        Neuroreport. 2000; 11: 491-496
        • Block R.I.
        • O'Leary D.S.
        • Hichwa R.D.
        • Augustinack J.C.
        • Ponto L.L.
        • Ghoneim M.M.
        • et al.
        Cerebellar hypoactivity in frequent marijuana users.
        Neuroreport. 2000; 11: 749-753
        • Gruber S.A.
        • Yurgelun-Todd D.A.
        Neuroimaging of marijuana smokers during inhibitory processing: A pilot investigation.
        Brain Res Cogn Brain Res. 2005; 23: 107-118
        • D'Souza D.C.
        • bi-Saab W.M.
        • Madonick S.
        • Forselius-Bielen K.
        • Doersch A.
        • Braley G.
        • et al.
        Delta-9-tetrahydrocannabinol effects in schizophrenia: Implications for cognition, psychosis, and addiction.
        Biol Psychiatry. 2005; 57: 594-608
        • Zuardi A.W.
        • Shirakawa I.
        • Finkelfarb E.
        • Karniol I.G.
        Action of cannabidiol on the anxiety and other effects produced by delta 9-THC in normal subjects.
        Psychopharmacology (Berl). 1982; 76: 245-250
        • Zuardi A.W.
        • Morais S.L.
        • Guimaraes F.S.
        • Mechoulam R.
        Antipsychotic effect of cannabidiol.
        J Clin Psychiatry. 1995; 56: 485-486
        • Zuardi A.W.
        • Crippa J.A.
        • Hallak J.E.
        • Moreira F.A.
        • Guimaraes F.S.
        Cannabidiol, a Cannabis sativa constituent, as an antipsychotic drug.
        Braz J Med Biol Res. 2006; 39: 421-429
        • Guimaraes V.M.
        • Zuardi A.W.
        • Del Bel E.A.
        • Guimaraes F.S.
        Cannabidiol increases Fos expression in the nucleus accumbens but not in the dorsal striatum.
        Life Sci. 2004; 75: 633-638
        • Moreira F.A.
        • Aguiar D.C.
        • Guimaraes F.S.
        Anxiolytic-like effect of cannabidiol in the rat Vogel conflict test.
        Prog Neuropsychopharmacol Biol Psychiatry. 2006; 30: 1466-1471
        • Volkow N.D.
        • Gillespie H.
        • Mullani N.
        • Tancredi L.
        • Grant C.
        • Valentine A.
        • et al.
        Brain glucose metabolism in chronic marijuana users at baseline and during marijuana intoxication.
        Psychiatry Res. 1996; 67: 29-38
        • Mathew R.J.
        • Wilson W.H.
        • Chiu N.Y.
        • Turkington T.G.
        • DeGrado T.R.
        • Coleman R.E.
        Regional cerebral blood flow and depersonalization after tetrahydrocannabinol administration.
        Acta Psychiatr Scand. 1999; 100: 67-75
        • Crippa J.A.
        • Zuardi A.W.
        • Garrido G.E.
        • Wichert-Ana L.
        • Guarnieri R.
        • Ferrari L.
        • et al.
        Effects of cannabidiol (CBD) on regional cerebral blood flow.
        Neuropsychopharmacology. 2004; 29: 417-426
        • Garavan H.
        • Ross T.J.
        • Stein E.A.
        Right hemispheric dominance of inhibitory control: An event-related functional MRI study.
        Proc Natl Acad Sci U S A. 1999; 96: 8301-8306
        • Rubia K.
        • Overmeyer S.
        • Taylor E.
        • Brammer M.
        • Williams S.C.
        • Simmons A.
        • et al.
        Functional frontalisation with age: Mapping neurodevelopmental trajectories with fMRI.
        Neurosci Biobehav Rev. 2000; 24: 13-19
        • Rubia K.
        • Smith A.B.
        • Brammer M.J.
        • Taylor E.
        Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection.
        Neuroimage. 2003; 20: 351-358
        • Rubia K.
        • Smith A.B.
        • Woolley J.
        • Nosarti C.
        • Heyman I.
        • Taylor E.
        • et al.
        Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control.
        Hum Brain Mapp. 2006; 27: 973-993
        • Konishi S.
        • Nakajima K.
        • Uchida I.
        • Sekihara K.
        • Miyashita Y.
        No-Go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging.
        Eur J Neurosci. 1998; 10: 1209-1213
        • Konishi S.
        • Nakajima K.
        • Uchida I.
        • Kikyo H.
        • Kameyama M.
        • Miyashita Y.
        Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI.
        Brain. 1999; 122: 981-991
        • Humberstone M.
        • Sawle G.V.
        • Clare S.
        • Hykin J.
        • Coxon R.
        • Bowtell R.
        • et al.
        Functional magnetic resonance imaging of single motor events reveals human presupplementary motor area.
        Ann Neurol. 1997; 42: 632-637
        • Kawashima R.
        • Satoh K.
        • Itoh H.
        • Ono S.
        • Furumoto S.
        • Gotoh R.
        • et al.
        Functional anatomy of GO/NO-GO discrimination and response selection—a PET study in man.
        Brain Res. 1996; 728: 79-89
        • Godefroy O.
        • Rousseaux M.
        Divided and focused attention in patients with lesion of the prefrontal cortex.
        Brain Cogn. 1996; 30: 155-174
        • Godefroy O.
        • Lhullier C.
        • Rousseaux M.
        Non-spatial attention disorders in patients with frontal or posterior brain damage.
        Brain. 1996; 119: 191-202
        • Weisbrod M.
        • Kiefer M.
        • Marzinzik F.
        • Spitzer M.
        Executive control is disturbed in schizophrenia: evidence from event-related potentials in a Go/NoGo task.
        Biol Psychiatry. 2000; 47: 51-60
        • Menon V.
        • Adleman N.E.
        • White C.D.
        • Glover G.H.
        • Reiss A.L.
        Error-related brain activation during a Go/NoGo response inhibition task.
        Hum Brain Mapp. 2001; 12: 131-143
        • Rubia K.
        • Smith A.B.
        • Brammer M.J.
        • Taylor E.
        Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection.
        Neuroimage. 2003; 20: 351-358
        • Rubia K.
        • Smith A.B.
        • Taylor E.
        • Brammer M.
        Linear age-correlated functional development of right inferior fronto-striato-cerebellar networks during response inhibition and anterior cingulate during error-related processes.
        Hum Brain Mapp. 2007; 28: 1163-1177
        • Menon V.
        • Adleman N.E.
        • White C.D.
        • Glover G.H.
        • Reiss A.L.
        Error-related brain activation during a Go/NoGo response inhibition task.
        Hum Brain Mapp. 2001; 12: 131-143
        • Rubia K.
        • Russell T.
        • Overmeyer S.
        • Brammer M.J.
        • Bullmore E.T.
        • Sharma T.
        • et al.
        Mapping motor inhibition: Conjunctive brain activations across different versions of go/no-go and stop tasks.
        Neuroimage. 2001; 13: 250-261
        • Buchsbaum B.R.
        • Greer S.
        • Chang W.L.
        • Berman K.F.
        Meta-analysis of neuroimaging studies of the Wisconsin card-sorting task and component processes.
        Hum Brain Mapp. 2005; 25: 35-45
        • Ridderinkhof K.R.
        • van den Wildenberg W.P.
        • Segalowitz S.J.
        • Carter C.S.
        Neurocognitive mechanisms of cognitive control: The role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning.
        Brain Cogn. 2004; 56: 129-140
        • Nelson H.E.
        • O'Connell A.
        Dementia: The estimation of premorbid intelligence levels using the New Adult Reading Test.
        Cortex. 1978; 14: 234-244
        • McLellan A.T.
        • Kushner H.
        • Metzger D.
        • Peters R.
        • Smith I.
        • Grissom G.
        • et al.
        The Fifth Edition of the Addiction Severity Index.
        J Subst Abuse Treat. 1992; 9: 199-213
        • Agurell S.
        • Carlsson S.
        • Lindgren J.E.
        • Ohlsson A.
        • Gillespie H.
        • Hollister L.
        Interactions of delta 1-tetrahydrocannabinol with cannabinol and cannabidiol following oral administration in man.
        Experientia. 1981; 37: 1090-1092
        • Chesher G.B.
        • Bird K.D.
        • Jackson D.M.
        • Perrignon A.
        • Starmer G.A.
        The effects of orally administered delta 9-tetrahydrocannabinol in man on mood and performance measures: a dose-response study.
        Pharmacol Biochem Behav. 1990; 35: 861-864
        • Koethe D.
        • Gerth C.W.
        • Neatby M.A.
        • Haensel A.
        • Thies M.
        • Schneider U.
        • et al.
        Disturbances of visual information processing in early states of psychosis and experimental delta-9-tetrahydrocannabinol altered states of consciousness.
        Schizophr Res. 2006; 88: 142-150
        • Leweke F.M.
        • Schneider U.
        • Thies M.
        • Munte T.F.
        • Emrich H.M.
        Effects of synthetic delta9-tetrahydrocannabinol on binocular depth inversion of natural and artificial objects in man.
        Psychopharmacology (Berl). 1999; 142: 230-235
        • Dale A.M.
        Optimal experimental design for event-related fMRI.
        Hum Brain Mapp. 1999; 8: 109-114
        • Rubia K.
        • Lee F.
        • Cleare A.J.
        • Tunstall N.
        • Fu C.H.
        • Brammer M.
        • et al.
        Tryptophan depletion reduces right inferior prefrontal activation during response inhibition in fast, event-related fMRI.
        Psychopharmacology (Berl). 2005; 179: 791-803
        • Bullmore E.T.
        • Suckling J.
        • Overmeyer S.
        • Rabe-Hesketh S.
        • Taylor E.
        • Brammer M.J.
        Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain.
        IEEE Trans Med Imaging. 1999; 18: 32-42
        • Friman O.
        • Borga M.
        • Lundberg P.
        • Knutsson H.
        Adaptive analysis of fMRI data.
        Neuroimage. 2003; 19: 837-845
        • Bullmore E.
        • Long C.
        • Suckling J.
        • Fadili J.
        • Calvert G.
        • Zelaya F.
        • et al.
        Colored noise and computational inference in neurophysiological (fMRI) time series analysis: Resampling methods in time and wavelet domains.
        Hum Brain Mapp. 2001; 12: 61-78
        • Talairach J.
        • Tournoux P.
        Co-Planar Stereotaxic Atlas of the Human Brain.
        Thieme Medical, New York1988
        • Brammer M.J.
        • Bullmore E.T.
        • Simmons A.
        • Williams S.C.
        • Grasby P.M.
        • Howard R.J.
        • et al.
        Generic brain activation mapping in functional magnetic resonance imaging: A nonparametric approach.
        Magn Reson Imaging. 1997; 15: 763-770
        • Rubia K.
        • Russell T.
        • Overmeyer S.
        • Brammer M.J.
        • Bullmore E.T.
        • Sharma T.
        • et al.
        Mapping motor inhibition: Conjunctive brain activations across different versions of go/no-go and stop tasks.
        Neuroimage. 2001; 13: 250-261
        • Derrfuss J.
        • Brass M.
        • Neumann J.
        • von Cramon D.Y.
        Involvement of the inferior frontal junction in cognitive control: Meta-analyses of switching and Stroop studies.
        Hum Brain Mapp. 2005; 25: 22-34
        • Tapert S.F.
        • Schweinsburg A.D.
        • Drummond S.P.
        • Paulus M.P.
        • Brown S.A.
        • Yang T.T.
        • et al.
        Functional MRI of inhibitory processing in abstinent adolescent marijuana users.
        Psychopharmacology (Berl). 2007; 194: 173-183
        • Abi-Dargham A.
        • Krystal J.H.
        • Anjilvel S.
        • Scanley B.E.
        • Zoghbi S.
        • Baldwin R.M.
        • et al.
        Alterations of benzodiazepine receptors in type II alcoholic subjects measured with SPECT and [123I]iomazenil.
        Am J Psychiatry. 1998; 155: 1550-1555
        • Volkow N.D.
        • Wang G.J.
        • Fowler J.S.
        Imaging studies of cocaine in the human brain and studies of the cocaine addict.
        Ann N Y Acad Sci. 1997; 820: 41-54
        • Wilkinson D.
        • Halligan P.
        The relevance of behavioural measures for functional-imaging studies of cognition.
        Nat Rev Neurosci. 2004; 5: 67-73
        • Solowij N.
        • Michie P.T.
        Cannabis and cognitive dysfunction: Parallels with endophenotypes of schizophrenia?.
        J Psychiatry Neurosci. 2007; 32: 30-52
        • Tournier M.
        • Sorbara F.
        • Gindre C.
        • Swendsen J.D.
        • Verdoux H.
        Cannabis use and anxiety in daily life: A naturalistic investigation in a non-clinical population.
        Psychiatry Res. 2003; 118: 1-8
        • D'Souza D.C.
        • Perry E.
        • MacDougall L.
        • Ammerman Y.
        • Cooper T.
        • Wu Y.T.
        • et al.
        The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: implications for psychosis.
        Neuropsychopharmacology. 2004; 29: 1558-1572
        • D'Souza D.C.
        • bi-Saab W.M.
        • Madonick S.
        • Forselius-Bielen K.
        • Doersch A.
        • Braley G.
        • et al.
        Delta-9-tetrahydrocannabinol effects in schizophrenia: Implications for cognition, psychosis, and addiction.
        Biol Psychiatry. 2005; 57: 594-608
        • Herkenham M.
        Cannabinoid receptor localization in brain: Relationship to motor and reward systems.
        Ann N Y Acad Sci. 1992; 654: 19-32
        • Tsou K.
        • Brown S.
        • Sanudo-Pena M.C.
        • Mackie K.
        • Walker J.M.
        Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system.
        Neuroscience. 1998; 83: 393-411
        • Drysdale A.J.
        • Ryan D.
        • Pertwee R.G.
        • Platt B.
        Cannabidiol-induced intracellular Ca2+ elevations in hippocampal cells.
        Neuropharmacology. 2006; 50: 621-631
        • Mechoulam R.
        • Parker L.A.
        • Gallily R.
        Cannabidiol: An overview of some pharmacological aspects.
        J Clin Pharmacol. 2002; 42: 11S-19S
        • Friston K.J.
        • Holmes A.P.
        • Worsley K.J.
        How many subjects constitute a study?.
        Neuroimage. 1999; 10: 1-5
        • Quickfall J.
        • Crockford D.
        Brain neuroimaging in cannabis use: A review.
        J Neuropsychiatry Clin Neurosci. 2006; 18: 318-332
        • Bodor A.L.
        • Katona I.
        • Nyiri G.
        • Mackie K.
        • Ledent C.
        • Hajos N.
        • et al.
        Endocannabinoid signaling in rat somatosensory cortex: Laminar differences and involvement of specific interneuron types.
        J Neurosci. 2005; 25: 6845-6856
        • Trettel J.
        • Fortin D.A.
        • Levine E.S.
        Endocannabinoid signalling selectively targets perisomatic inhibitory inputs to pyramidal neurones in juvenile mouse neocortex.
        J Physiol. 2004; 556: 95-107
        • World Health Organization and Division of Mental Health and Prevention of Substance Abuse
        Cannabis: A Health Perspective and Research Agenda (WHO/MSA/PSA/97.4).
        (1997) (Accessed June 16, 2008)