Advertisement

Use of Neuromelanin-Sensitive MRI to Distinguish Schizophrenic and Depressive Patients and Healthy Individuals Based on Signal Alterations in the Substantia Nigra and Locus Ceruleus

      Background

      We investigated alterations in the substantia nigra pars compacta (SNc) and locus ceruleus (LC) in schizophrenic and depressive patients by using a neuromelanin-sensitive magnetic resonance imaging (MRI) technique that enables direct visualization of these nuclei and examined whether this technique could distinguish between these disorders and healthy subjects.

      Methods

      Using a neuromelanin-sensitive T1-weighted MRI technique, we examined 20 schizophrenia patients, 18 depressive patients, and 34 healthy control subjects. The signal intensities of the areas corresponding to the SNc and LC were measured, and the contrast ratios (CR) to the adjacent white matter were calculated.

      Results

      The CR of the SNc was significantly higher in schizophrenic patients (22.6 ± 5.6) than in depressive patients (19.2 ± 4.7) and healthy control subjects (19.6 ± 3.8), whereas the CR of the LC in depressive patients (7.7 ± 2.4) was significantly lower than that in healthy control subjects (11.0 ± 3.9) and schizophrenic patients (10.0 ± 3.1). Further, the difference in the CR between the SNc and LC was significantly greater in schizophrenic patients (12.6 ± 6.7) than in control subjects (8.6 ± 4.1).

      Conclusions

      Neuromelanin-sensitive MRI enables visualization of alterations in the SNc and LC that are observed in schizophrenia and depression.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mackay A.V.
        • Iversen L.L.
        • Rossor M.
        • Spokes E.
        • Bird E.
        • Arregui A.
        • et al.
        Increased brain dopamine and dopamine receptors in schizophrenia.
        Arch Gen Psychiatry. 1982; 39: 991-997
        • Moore H.
        • West A.R.
        • Grace A.A.
        The regulation of forebrain dopamine transmission: Relevance to the pathophysiology and psychopathology of schizophrenia.
        Biol Psychiatry. 1999; 46: 40-55
        • Siever L.J.
        • Davis K.L.
        Overview: Toward a dysregulation hypothesis of depression.
        Am J Psychiatry. 1985; 142: 1017-1031
        • Malhi G.S.
        • Parker G.B.
        • Greenwood J.
        Structural and functional models of depression; from sub-types to substrates.
        Acta Psychiatr Scand. 2005; 11: 94-105
        • Martinot J.L.
        • Peron-Magnan P.
        • Huret J.D.
        • Mazoyer B.
        • Baron J.C.
        • Boulenger J.P.
        • et al.
        Striatal D2 dopaminergic receptors assessed with positron emission tomography and [76Br]bromospiperone in untreated schizophrenic patients.
        Am J Psychiatry. 1990; 147: 44-50
        • Farde L.
        • Wiesel F.A.
        • Stone-Elander S.
        • Halldin C.
        • Nordstrom A.L.
        • Hall H.
        • et al.
        D2 dopamine receptors in neuroleptic-naive schizophrenic patients.
        Arch Gen Psychiatry. 1990; 47: 213-219
        • Hietala J.
        • Syvalahti E.
        • Vuorio K.
        • Nagren K.
        • Lehikoinen P.
        • Ruotsalainen U.
        • et al.
        Striatal D2 dopamine receptor characteristics in neuroleptic-naive schizophrenic patients studied with positron emission tomography.
        Arch Gen Psychiatry. 1994; 51: 116-123
        • Okubo Y.
        • Suhara T.
        • Suzuki K.
        • Kobayashi K.
        • Inoue O.
        • Terasaki O.
        • et al.
        Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET.
        Nature. 1997; 385: 634-636
        • Graham D.G.
        On the origin and significance of neuromelanin.
        Arch Pathol Lab Med. 1979; 103: 359-362
        • Sasaki M.
        • Shibata E.
        • Tohyama K.
        • Takahashi J.
        • Otsuka K.
        • Tsuchiya K.
        • et al.
        Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson's disease.
        Neuroreport. 2006; 31: 1215-1218
        • Shibata E.
        • Sasaki M.
        • Tohyama K.
        • Otsuka K.
        • Sakai A.
        Reduced signal of locus ceruleus in depression in quantitative neuromelanin magnetic resonance imaging.
        Neuroreport. 2007; 18: 415-418
        • German D.C.
        • Walker B.S.
        • Manaye K.
        • Smith W.K.
        • Woodward D.J.
        • North A.J.
        The human locus coeruleus: Computer reconstruction of cellular distribution.
        J Neurosci. 1988; 8: 193-203
        • Van Woert M.H.
        • Ambani L.M.
        Biochemistry of neuromelanin.
        Adv Neurol. 1974; 5: 215-223
        • Enochs W.S.
        • Petherick P.
        • Bogdanova A.
        • Mohr U.
        • Weissleder R.
        Paramagnetic metal scavenging by melanin: MR imaging.
        Radiology. 1997; 204: 417-423
        • Tosk J.M.
        • Holshouser B.A.
        • Aloia R.C.
        • Hinshaw D.B.
        • Hasso A.N.
        • MacMurray J.P.
        • et al.
        Effects of the interaction between ferric iron and L-dopa melanin on T1 and T2 relaxation times determined by magnetic resonance imaging.
        Magn Reson Med. 1992; 26: 40-45
        • Wansapura J.P.
        • Holland S.K.
        • Dunn R.S.
        • Ball W.S.
        NMR relaxation times in the human brain at 3.0 tesla.
        J Magn Reson Imaging. 1999; 9: 531-538
        • Melki P.S.
        • Mulkern R.V.
        Magnetization transfer effects in multislice RARE sequences.
        Magn Reson Med. 1992; 24: 189-195
        • Shibata E.
        • Sasaki M.
        • Tohyama K.
        • Kanbara Y.
        • Otsuka K.
        • Ehara S.
        • et al.
        Age-related changes in locus ceruleus on neuromelanin magnetic resonance imaging at 3 Tesla.
        Magn Reson Med Sci. 2006; 5: 197-200
        • Kaiya H.
        Neuromelanin, neuroleptics and schizophrenia: Hypothesis of an interaction between noradrenergic and dopaminergic system.
        Neuropsychobiology. 1980; 6: 241-248
        • Craven R.M.
        • Priddle T.H.
        • Crow T.J.
        • Esiri M.M.
        The locus coeruleus in schizophrenia: a postmortem study of noradrenergic neurons.
        Neuropathol Appl Neurobiol. 2005; 31: 115-126
        • Lohr J.B.
        • Jeste D.V.
        Locus ceruleus morphometry in aging and schizophrenia.
        Acta Psychiatr Scand. 1988; 77: 689-697
        • Weinberger D.R.
        Implications of normal brain development for the pathogenesis of schizophrenia.
        Arch Gen Psychiatry. 1987; 44: 660-669
        • Baumann B.
        • Danos P.
        • Krell D.
        • Diekmann S.
        • Wurthmann C.
        • Bielau H.
        • et al.
        Unipolar-bipolar dichotomy of mood disorders is supported by noradrenergic brainstem system morphology.
        J Affect Disord. 1999; 54: 217-224
        • Friedman A.
        • Dremencov E.
        • Crown H.
        • Levy D.
        • Mintz M.
        • Overstreet D.H.
        • et al.
        Variability of the mesolimbic neuronal activity in a rat model of depression.
        Neuroreport. 2005; 16: 513-516
        • Tung C.S.
        • Ugedo L.
        • Grenhoff J.
        • Engberg G.
        • Svensson T.H.
        Peripheral induction of burst firing in locus coeruleus neurons by nicotine mediated via excitatory amino acids.
        Synapse. 1989; 4: 313-318
        • Enochs W.S.
        • Petherick P.
        • Bogdanova A.
        • Mohr U.
        • Weissleder R.
        Paramagnetic metal scavenging by melanin: MR imaging.
        Radiology. 1997; 204: 417-423
        • Casanova M.F.
        • Comparini S.O.
        • Kim R.W.
        • Kleinman J.E.
        Staining intensity of brain iron in patients with schizophrenia: A postmortem study.
        J Neuropsychiatry Clin Neurosci. 1992; 4: 36-41