Advertisement

Functional Magnetic Resonance Imaging Reveals Neuroanatomical Dissociations During Semantic Integration in Schizophrenia

  • Gina R. Kuperberg
    Correspondence
    Address reprint requests to Gina R. Kuperberg, M.D., Ph.D., Department of Psychology, Tufts University, 490 Boston Avenue, Medford, MA 02155, or Department of Psychiatry, Massachusetts General Hospital, Bldg. 149, 13th Street, Charlestown, MA 02129
    Affiliations
    MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts

    Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts

    Department of Psychology, Tufts University, Medford, Massachusetts
    Search for articles by this author
  • W. Caroline West
    Affiliations
    MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts

    Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.
    Search for articles by this author
  • Balaji M. Lakshmanan
    Affiliations
    MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
    Search for articles by this author
  • Don Goff
    Affiliations
    Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts
    Search for articles by this author

      Background

      Schizophrenia symptoms can be conceptualized in terms of a breakdown of a balance between 1) activating, retrieving, and matching stored representations to incoming information (semantic memory-based processing) and 2) fully integrating activated semantic representations with one another and with other types of representations to form a gestalt representation of meaning (semantic integration). Semantic memory-based processes are relatively more dependent on inferior frontal and temporal cortices, whereas particularly demanding integrative processes additionally recruit the dorsolateral prefrontal cortex (DLPFC) and sometimes parietal cortices. We used functional magnetic resonance imaging (fMRI) to determine whether the modulation of temporal/inferior frontal cortices and the DLPFC can be neuroanatomically dissociated in schizophrenia, as semantic integration demands increase. Integration demands were manipulated by varying the nature (concrete vs. abstract) and the congruity (incongruous vs. congruous) of words within sentences.

      Methods

      Sixteen right-handed schizophrenia patients and 16 healthy volunteers, matched on age and parental socioeconomic status, underwent event-related fMRI scanning while they read sentences. Blood oxygen level dependent (BOLD) effects were contrasted to words within sentences that were 1) concrete versus abstract and 2) semantically incongruous versus congruous with their preceding contexts.

      Results

      In both contrasts, large networks mediating the activation and retrieval of verbal and imagistic representations were normally modulated in patients. However, unlike control subjects, patients failed to recruit the DLPFC, medial frontal and parietal cortices to incongruous (relative to congruous) sentences, and failed to recruit the DLPFC to concrete (relative to abstract) sentences.

      Conclusions

      As meaning is built from language, schizophrenia patients demonstrate a neuroanatomical dissociation in the modulation of temporal/inferior frontal cortices and the DLPFC.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Price C.J.
        The anatomy of language: Contributions from functional neuroimaging.
        J Anat. 2000; 197: 335-359
        • Goldberg R.F.
        • Perfetti C.A.
        • Fiez J.A.
        • Schneider W.
        Selective retrieval of abstract semantic knowledge in left prefrontal cortex.
        J Neurosci. 2007; 27: 3790-3798
        • Paivio A.
        Mental Representations.
        Clarendon Press, Oxford1986
        • Sabsevitz D.S.
        • Medler D.A.
        • Seidenberg M.
        • Binder J.R.
        Modulation of the semantic system by word imageability.
        Neuroimage. 2005; 27: 188-200
        • Binder J.R.
        • Westbury C.F.
        • McKiernan K.A.
        • Possing E.T.
        • Medler D.A.
        Distinct brain systems for processing concrete and abstract concepts.
        J Cogn Neurosci. 2005; 17: 905-917
        • Martin A.
        • Chao L.L.
        Semantic memory and the brain: Structure and processes.
        Curr Opin Neurobiol. 2001; 11: 194-201
        • Kosslyn S.M.
        • Ganis G.
        • Thompson W.L.
        Neural foundations of imagery.
        Nat Rev Neurosci. 2001; 2: 635-642
        • West W.C.
        • Holcomb P.J.
        Imaginal, semantic, and surface-level processing of concrete and abstract words: An electrophysiological investigation.
        J Cogn Neurosci. 2000; 12: 1024-1037
        • Kutas M.
        • Federmeier K.D.
        Electrophysiology reveals semantic memory use in language comprehension.
        Trends Cogn Sci. 2000; 4: 463-470
        • Kuperberg G.R.
        Neural mechanisms of language comprehension: Challenges to syntax.
        Brain Res. 2007; 1146: 23-49
        • Kuperberg G.R.
        • Holcomb P.J.
        • Sitnikova T.
        • Greve D.
        • Dale A.M.
        • Caplan D.
        Distinct patterns of neural modulation during the processing of conceptual and syntactic anomalies.
        J Cogn Neurosci. 2003; 15: 272-293
        • Hagoort P.
        • Hald L.
        • Bastiaansen M.
        • Petersson K.M.
        Integration of word meaning and world knowledge in language comprehension.
        Science. 2004; 304: 438-441
        • Kuperberg G.R.
        • Sitnikova T.
        • Lakshmanan B.M.
        Neuroanatomical distinctions within the semantic system during sentence comprehension: Evidence from functional magnetic resonance imaging.
        Neuroimage. 2008; 40: 367-388
        • Chen E.
        • West W.C.
        • Waters G.
        • Caplan D.
        Determinants of BOLD signal correlates of processing object-extracted relative clauses.
        Cortex. 2006; 42: 591-604
      1. Caplan D, Chen E, Waters G. Task-dependent and task-independent neurovascular responses to syntactic processing. Cortex In press.

        • Manschreck T.C.
        • Maher B.A.
        • Milavetz J.J.
        • Ames D.
        • Weisstein C.C.
        • Schneyer M.L.
        Semantic priming in thought disordered schizophrenic patients.
        Schizophr Res. 1988; 1: 61-66
        • Spitzer M.
        • Weisker I.
        • Winter M.
        • Maier S.
        • Hermle L.
        • Maher B.A.
        Semantic and phonological priming in schizophrenia.
        J Abnorm Psychol. 1994; 103: 485-494
        • Mathalon D.H.
        • Faustman W.O.
        • Ford J.M.
        N400 and automatic semantic processing abnormalities in patients with schizophrenia.
        Arch Gen Psychiatry. 2002; 59: 641-648
      2. Kreher DA, Holcomb PJ, Goff D, Kuperberg GR. Increased neural semantic priming in schizophrenic thought disorder: Evidence from event-related potentials. Schizophr Bull In press. Advance Access published September 28, 2007.

        • Moritz S.
        • Woodward T.S.
        • Kuppers D.
        • Lausen A.
        • Schickel M.
        Increased automatic spreading of activation in thought-disordered schizophrenic patients.
        Schizophr Res. 2002; 59: 181-186
        • Kuperberg G.R.
        • Ditman T.
        • Kreher D.A.
        • Goldberg T.
        Approaches to understanding language dysfunction in neuropsychiatric disorders: Insights from the study of schizophrenia.
        in: Wood S. Allen N. Pantelis C. Handbook of Neuropsychology of Mental Illness. Cambridge University Press, Cambridge2008
      3. Kuperberg GR, Kreher DA, Ditman T. What can event-related potentials tell us about language, and perhaps even thought, in schizophrenia? International Journal of Psychophysiology Special Issue on Language and Psychophysiology. In press.

        • Elvevag B.
        • Heit E.
        • Storms G.
        • Goldberg T.
        Category content and structure in schizophrenia: An evaluation using the instantiation principle.
        Neuropsychology. 2005; 19: 371-380
        • Paul B.M.
        • Elvevag B.
        • Bokat C.E.
        • Weinberger D.R.
        • Goldberg T.E.
        Levels of processing effects on recognition memory in patients with schizophrenia.
        Schizophr Res. 2005; 74: 101-110
        • Ragland J.D.
        • Moelter S.T.
        • McGrath C.
        • Hill S.K.
        • Gur R.E.
        • Bilker W.B.
        • et al.
        Levels-of-processing effect on word recognition in schizophrenia.
        Biol Psychiatry. 2003; 54: 1154-1161
        • Bonner-Jackson A.
        • Haut K.
        • Csernansky J.G.
        • Barch D.M.
        The influence of encoding strategy on episodic memory and cortical activity in schizophrenia.
        Biol Psychiatry. 2005; 58: 47-55
        • Ragland J.D.
        • Gur R.C.
        • Valdez J.N.
        • Loughead J.
        • Elliott M.
        • Kohler C.
        • et al.
        Levels-of-Processing Effect on frontotemporal function in schizophrenia during word encoding and recognition.
        Am J Psychiatry. 2005; 162: 1840-1848
        • Wolf D.H.
        • Gur R.C.
        • Valdez J.N.
        • Loughead J.
        • Elliott M.A.
        • Gur R.E.
        • Ragland J.D.
        Alterations of fronto-temporal connectivity during word encoding in schizophrenia.
        Psychiatry Res. 2007; 154: 221-232
        • Kuperberg G.
        • Deckersbach T.
        • Holt D.
        • Goff D.
        • West W.C.
        Increased temporal and prefrontal activity to semantic associations in schizophrenia.
        Arch Gen Psychiatry. 2007; 64: 138-151
        • Kircher T.T.
        • Bulimore E.T.
        • Brammer M.J.
        • Williams S.C.
        • Broome M.R.
        • Murray R.M.
        • McGuire P.K.
        Differential activation of temporal cortex during sentence completion in schizophrenic patients with and without formal thought disorder.
        Schizophr Res. 2001; 50: 27-40
        • Barch D.M.
        • Cohen J.D.
        • Servan-Schreiber D.
        • Steingard S.
        • Steinhauer S.
        • van Kammen D.
        Semantic priming in schizophrenia: An examination of spreading activation using word pronunciation and multiple SOAs.
        J Abnorm Psychol. 1996; 105: 592-601
        • Kuperberg G.R.
        • Kreher D.A.
        • Goff D.
        • McGuire P.K.
        • David A.S.
        Building up linguistic context in schizophrenia: Evidence from self-paced reading.
        Neuropsychology. 2006; 20: 442-452
        • Kuperberg G.R.
        • Sitnikova T.
        • Goff D.
        • Holcomb P.J.
        Making sense of sentences in schizophrenia: Electrophysiological evidence for abnormal interactions between semantic and syntactic processing.
        J Abnorm Psychol. 2006; 115: 243-256
        • Sitnikova T.
        • Salisbury D.F.
        • Kuperberg G.
        • Holcomb P.I.
        Electrophysiological insights into language processing in schizophrenia.
        Psychophysiology. 2002; 39: 851-860
        • Adams J.
        • Faux S.F.
        • Nestor P.G.
        • Shenton M.
        • Marcy B.
        • Smith S.
        • McCarley R.W.
        ERP abnormalities during semantic processing in schizophrenia.
        Schizophr Res. 1993; 10: 247-257
        • Mitchell P.F.
        • Andrews S.
        • Fox A.M.
        • Catts S.V.
        • Ward P.B.
        • McConaghy N.
        Active and passive attention in schizophrenia: An ERP study of information processing in a linguistic task.
        Biol Psychiatry. 1991; 32: 101-124
        • MacDonald 3rd, A.W.
        • Carter C.S.
        • Kerns J.G.
        • Ursu S.
        • Barch D.M.
        • Holmes A.J.
        • et al.
        Specificity of prefrontal dysfunction and context processing deficits to schizophrenia in never-medicated patients with first-episode psychosis.
        Am J Psychiatry. 2005; 162: 475-484
        • Holmes A.J.
        • MacDonald 3rd, A.
        • Carter C.S.
        • Barch D.M.
        • Andrew Stenger V.
        • Cohen J.D.
        Prefrontal functioning during context processing in schizophrenia and major depression: An event-related fMRI study.
        Schizophr Res. 2005; 76: 199-206
        • MacDonald 3rd, A.W.
        • Carter C.S.
        Event-related FMRI study of context processing in dorsolateral prefrontal cortex of patients with schizophrenia.
        J Abnorm Psychol. 2003; 112: 689-697
        • Holcomb P.J.
        • Kounios J.
        • Anderson J.E.
        • West W.C.
        Dual-coding, context-availability, and concreteness effects in sentence comprehension: An electrophysiological investigation.
        J Exp Psychol Learn Mem Cogn. 1999; 25: 721-742
      4. DSM-IV: Diagnostic and Statistical Manual of Mental Disorders, 4th Rev ed. Washington DC: American Psychiatric Press.

        • Spitzer R.L.
        • Williams J.B.
        • Gibbon M.
        • First M.B.
        The Structured Clinical Interview for DSM-III-R (SCID) I: History, rationale and description.
        Arch Gen Psychiatry. 1992; 49: 642-649
        • Oldfield R.C.
        The assessment and analysis of handedness: The Edinburgh inventory.
        Neuropsychologia. 1971; 9: 97-113
        • White K.
        • Ashton R.
        Handedness assessment inventory.
        Neuropsychologia. 1976; 14: 261-264
        • Burock M.A.
        • Buckner R.L.
        • Woldorff M.G.
        • Rosen B.R.
        • Dale A.M.
        Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI.
        Neuroreport. 1998; 9: 3735-3739
        • Dale A.M.
        • Sereno M.I.
        Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach.
        J Cogn Neurosci. 1993; 5: 162-176
        • Dale A.M.
        • Fischl B.
        • Sereno M.I.
        Cortical surface-based analysis.
        Neuroimage. 1999; 9: 179-194
        • Fischl B.
        • Liu A.
        • Dale A.M.
        Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex.
        IEEE Trans Med Imaging. 2001; 20: 70-80
        • Fischl B.
        • Sereno M.I.
        • Dale A.M.
        Cortical surface-based analysis.
        Neuroimage. 1999; 9: 195-207
        • Fischl B.
        • Sereno M.I.
        • Tootell R.B.
        • Dale A.M.
        High-resolution intersubject averaging and a coordinate system for the cortical surface.
        Hum Brain Mapp. 1999; 8: 272-284
        • Cox R.W.
        • Jesmanowicz A.
        Real-time 3D image registration for functional MRI.
        Magn Reson Med. 1999; 42: 1014-1018
        • Cox R.W.
        AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages.
        Comput Biomed Res. 1996; 29: 162-173
        • Friston K.J.
        • Fletcher P.
        • Josephs O.
        • Holmes A.
        • Rugg M.D.
        • Turner R.
        Event-related fMRI: Characterizing differential responses.
        Neuroimage. 1998; 7: 30-40
        • Doherty C.P.
        • West W.C.
        • Dilley L.C.
        • Shattuck-Hufnagel S.
        • Caplan D.
        Question/statement judgments: An fMRI study of intonation processing.
        Hum Brain Mapp. 2004; 23: 85-98
        • Fiebach C.J.
        • Friederici A.D.
        Processing concrete words: fMRI evidence against a specific right-hemisphere involvement.
        Neuropsychologia. 2004; 42: 62-70
        • Barsalou L.W.
        Perceptual symbol systems.
        Behav Brain Sci. 1999; 22 (discussion 610–660.): 577-609
        • Noppeney U.
        • Price C.J.
        Retrieval of abstract semantics.
        Neuroimage. 2004; 22: 164-170
        • Kroll J.F.
        • Merve J.S.
        Lexical access for concrete and abstract words.
        Journal of Experimental Psychology Learning, Memory and Cognition. 1986; 12: 92-107
        • Murray L.J.
        • Ranganath C.
        The dorsolateral prefrontal cortex contributes to successful relational memory encoding.
        J Neurosci. 2007; 27: 5515-5522
        • Park H.
        • Rugg M.D.
        The relationship between study processing and the effects of cue congruency at retrieval: fMRI support for transfer appropriate processing.
        Cereb Cortex. 2008; 18: 868-875
        • Beeman M.
        • Friedman R.B.
        • Grafman J.
        • Perez E.
        • Diamond S.
        • Lindsay M.B.
        Summation priming and coarse coding in the right hemisphere.
        J Cogn Neurosci. 1994; 6: 26-45
        • Faust M.
        • Lavidor M.
        Semantically convergent and semantically divergent priming in the cerebral hemispheres: Lexical decision and semantic judgment.
        Cogn Brain Res. 2003; 17: 585-597
        • Niznikiewicz M.A.
        • O'Donnell B.F.
        • Nestor P.G.
        • Smith L.
        • Law S.
        • Karapelou M.
        • et al.
        ERP assessment of visual and auditory language processing in schizophrenia.
        J Abnorm Psychol. 1997; 106: 85-94
        • Ruchsow M.
        • Trippel N.
        • Groen G.
        • Spitzer M.
        • Kiefer M.
        Semantic and syntactic processes during sentence comprehension in patients with schizophrenia: Evidence from event-related potentials.
        Schizophr Res. 2003; 64: 147-156
        • Ohta K.
        • Uchiyama M.
        • Matsushima E.
        • Toru M.
        An event-related potential study in schizophrenia using Japanese sentences.
        Schizophr Res. 1999; 40: 159-170
        • Kircher T.T.
        • Oh T.M.
        • Brammer M.J.
        • McGuire P.K.
        Neural correlates of syntax production in schizophrenia.
        Br J Psychiatry. 2005; 186: 209-214
        • Lee J.
        • Park S.
        Working memory impairments in schizophrenia: A meta-analysis.
        J Abnorm Psychol. 2005; 114: 599-611
        • Bagner D.M.
        • Melinder M.R.
        • Barch D.M.
        Language comprehension and working memory language comprehension and working memory deficits in patients with schizophrenia.
        Schizophr Res. 2003; 60: 299-309
        • Condray R.
        • Steinhauer S.R.
        • van Kammen D.P.
        • Kasparek A.
        Working memory capacity predicts language comprehension in schizophrenic patients.
        Schizophr Res. 1996; 20: 1-13
        • Manoach D.S.
        Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings.
        Schizophr Res. 2003; 60: 285-298
        • Barch D.M.
        • Sheline Y.I.
        • Csernansky J.G.
        • Snyder A.Z.
        Working memory and prefrontal cortex dysfunction: Specificity to schizophrenia compared with major depression.
        Biol Psychiatry. 2003; 53: 376-384
        • Blumenfeld R.S.
        • Ranganath C.
        Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization.
        J Neurosci. 2006; 26: 916-925
        • Caplan D.
        • Waters G.S.
        Verbal working memory and sentence comprehension.
        Behav Brain Sci. 1999; 22 (discussion 95–126.): 77-94
        • Fedorenko E.
        • Gibson E.
        • Rohde D.
        The nature of working memory capacity in sentence comprehension.
        J Mem Lang. 2006; 54: 541-553
        • Kucera H.
        • Francis W.N.
        Computational Analysis of Present Day American English.
        Brown University Press, Providence, Rhode Island1967
        • Hollingshead A.B.
        Two Factor Index of Social Position.
        Yale University Press, New Haven, Connecticut1965
        • Blair J.R.
        • Spreen O.
        Predicting premorbid IQ: A revision of the National Adult Reading Test.
        Clin Neuropsychologist. 1989; : 129-136
        • Kay S.R.
        • Fiszbein A.
        • Opler L.A.
        The positive and negative syndrome scale (PANSS) for schizophrenia.
        Schizophr Bull. 1987; 13: 261-276