Genetic Variation in the DAOA (G72) Gene Modulates Hippocampal Function in Subjects at High Risk of Schizophrenia


      Strong evidence exists for an association between genetic variation in the gene DAOA (D-amino acid oxidase activator, also known as G72) and risk for schizophrenia. Preliminary evidence in healthy control subjects has implicated genetic variation in the DAOA gene in the modulation of hippocampal complex and prefrontal cortex activation.


      Assessment was performed on 61 subjects at high genetic risk of schizophrenia for familial reasons. All subjects were genotyped for two closely linked single nucleotide polymorphisms in the DAOA gene complex, M23 (rs3918342) and M24 (rs1421292), that have previously shown association with schizophrenia. The effect of genotype on brain activation was assessed with functional magnetic resonance imaging data gathered during performance of the verbal initiation section of the Hayling Sentence Completion Task.


      Differences between DAOA genotype groups were seen in the activation of the left hippocampus and parahippocampus in the contrast of sentence completion versus rest. In addition the DAOA genotype groups differed in their recruitment of right inferior prefrontal cortex in relation to increasing task difficulty. The effects of genotype on brain activation could not be explained in terms of differences in grey matter density.


      These results support the view that genetic variation in the DAOA gene influences hippocampal complex and prefrontal cortex function, an effect that might be particularly prominent in the context of enhanced genetic risk for schizophrenia.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Lawrie S.M.
        • Johnstone E.C.
        • Weinberger D.R.
        Schizophrenia: From Imaging to Neuroscience.
        Oxford University Press, New York2004
        • Whalley H.C.
        • Harris J.
        • Lawrie S.M.
        The neurobiological underpinnings of risk and conversion in relatives of patients with schizophrenia.
        Int Rev Psychiatry. 2007; 19: 383-397
        • Harrison P.J.
        • Weinberger D.R.
        Schizophrenia genes, gene expression, and neuropathology: On the matter of their convergence.
        Mol Psychiatry. 2005; 10: 40-68
        • Chumakov I.
        • Blumenfeld M.
        • Guerassimenko O.
        • Cavarec L.
        • Palicio M.
        • Abderrahim H.
        • et al.
        Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia.
        PNAS. 2002; 99: 13675-13680
        • Schumacher J.
        • Jamra R.A.
        • Freundenberg J.
        • Becker T.
        • Ohlraun S.
        • Otte A.C.
        • et al.
        Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder.
        Mol Psychiatry. 2004; 9: 203-207
        • Zou F.
        • Li C.
        • Duan S.
        • Zheng Y.
        • Gu N.
        • Feng G.
        • et al.
        A family-based study of the association between the G72/G30 genes and schizophrenia in the Chinese population.
        Schizophr Res. 2005; 73: 257-261
        • Korostishevsky M.
        • Kremer I.
        • Kaganovich M.
        • Cholostoy A.
        • Murad I.
        • Muhaheed M.
        • et al.
        Transmission disequilibrium and haplotype analyses of the G72/G30 locus: Suggestive linkage to schizophrenia in Palestinian Arabs living in the North of Israel.
        Am J Med Genet B Neuropsychiatr Genet. 2006; 141B: 91-95
        • Wang X.
        • He G.
        • Gu N.
        • Yang J.
        • Tang J.
        • Chen Q.
        • et al.
        Association of G72/G30 with schizophrenia in the Chinese population.
        Biochem Biophys Res Commun. 2004; 319: 1281-1286
        • Ma J.
        • Qin W.
        • Wang X.Y.
        • Guo T.W.
        • Bian L.
        • Duan S.W.
        • et al.
        Further evidence for the association between G72/G30 genes and schizophrenia in two ethnically distinct populations.
        Mol Psychiatry. 2006; 11: 479-487
        • Liu Y.-L.
        • Fann C.S.-J.
        • Liu C.-M.
        • Chang C.C.
        • Wu J.-Y.
        • Hung S.-I.
        • et al.
        No association of G72 and d-amino acid oxidase genes with schizophrenia.
        Schizophr Res. 2006; 87: 15-20
        • Mulle J.G.
        • Chowdari K.V.
        • Nimgaonkar V.
        • Chakravarti A.
        No evidence for association to the G72/G30 locus in an independent sample of schizophrenia families.
        Mol Psychiatry. 2005; 10: 431-433
        • Li D.
        • He L.
        G72/G30 Genes and schizophrenia: A systematic meta-analysis of association studies.
        Genetics. 2007; 175: 917-922
        • Detera-Wadleigh S.D.
        • McMahon F.J.
        G72/G30 in schizophrenia and bipolar disorder: Review and meta-analysis.
        Biol Psychiatry. 2006; 60: 106-114
        • Boks M.P.M.
        • Rietkerk T.
        • van de Beek M.H.
        • Sommer I.E.
        • de Koning T.J.
        • Kahn R.S.
        Reviewing the role of the genes G72 and DAAO in glutamate neurotransmission in schizophrenia.
        Eur Neuropsychopharmacol. 2007; 17: 567
        • Coyle J.T.
        Glutamate and schizophrenia: Beyond the dopamine hypothesis.
        Cell Mol Neurobiol. 2006; 26: 365-384
        • Kvajo M.
        • Dhilla A.
        • Swor D.E.
        • Karayiorgou M.
        • Gogos J.A.
        Evidence implicating the candidate schizophrenia/bipolar disorder susceptibility gene G72 in mitochondrial function.
        Mol Psychiatry. 2007; ([published online ahead of print August 7])
        • Goldberg T.E.
        • Straub R.E.
        • Callicott J.H.
        • Hariri A.
        • Mattay V.S.
        • Bigelow L.
        • et al.
        The G72/G30 gene complex and cognitive abnormalities in schizophrenia.
        Neuropsychopharmacology. 2006; 31: 2022-2032
        • Johnstone E.C.
        • Abukmeil S.S.
        • Byrne M.
        • Clafferty R.
        • Grant E.
        • Hodges A.
        • et al.
        Edinburgh high risk study—findings after four years: Demographic, attainment and psychopathological issues.
        Schizophr Res. 2000; 46: 1-15
        • McGuffin P.
        • Farmer A.
        • Harvey I.
        A polydiagnostic application of operational criteria in studies of psychotic illness.
        Arch Gen Psychiatry. 1991; 48: 764-770
        • Whalley H.C.
        • Simonotto E.
        • Flett S.
        • Marshall I.
        • Ebmeier K.P.
        • Owens D.G.C.
        • et al.
        fMRI correlates of state and trait effects in subjects at genetically enhanced risk of schizophrenia.
        Brain. 2004; 127: 478-490
        • Burgess P.W.
        • Shallice T.
        Response suppression, initiation and strategy use following frontal lobe lesions.
        Neuropsychologia. 1996; 34: 263-272
        • Good C.D.
        • Johnsrude I.S.
        • Ashburner J.
        • Henson R.N.A.
        • Friston K.J.
        • Frackowiak R.S.J.
        A voxel-based morphometric study of ageing in 465 normal adult human brains.
        NeuroImage. 2001; 14: 21-36
        • Spencer M.D.
        • Moorhead T.W.J.
        • McIntosh A.M.
        • Stanfield A.C.
        • Muir W.J.
        • Hoare P.
        • et al.
        Grey matter correlates of early psychotic symptoms in adolescents at enhanced risk of psychosis: A voxel-based study.
        NeuroImage. 2007; 35: 1181-1191
        • Moorhead T.W.J.
        • Job D.E.
        • Whalley H.C.
        • Sanderson T.L.
        • Johnstone E.C.
        • Lawrie S.M.
        Voxel-based morphometry of comorbid schizophrenia and learning disability: Analyses in normalized and native spaces using parametric and nonparametric statistical methods.
        NeuroImage. 2004; 22: 188-202
        • Ashburner J.
        • Friston K.J.
        Voxel-based morphometry—the methods.
        NeuroImage. 2000; 11: 805-821
        • Nathaniel-James D.A.
        • Frith C.D.
        The role of the dorsolateral prefrontal cortex: Evidence from the effects of contextual constraint in a sentence completion task.
        NeuroImage. 2002; 16: 1094-1102
        • Nathaniel-James D.A.
        • Fletcher P.
        • Frith C.D.
        The functional anatomy of verbal initiation and suppression using the Hayling Test.
        Neuropsychologia. 1997; 35: 559-566
      1. Harrison PJ (2004): The hippocampus in schizophrenia: A review of the neuropathological evidence and its pathophysiological implications. 174:151–162.

        • Heckers S.
        Neuroimaging studies of the hippocampus in schizophrenia.
        Hippocampus. 2001; 11: 520-528
        • Wright I.C.
        • Rabe-Hesketh S.
        • Woodruff P.W.R.
        • David A.S.
        • Murray R.M.
        • Bullmore E.T.
        Meta-analysis of regional brain volumes in schizophrenia.
        Am J Psychiatry. 2000; 157: 16-25
        • Honea R.
        • Crow T.J.
        • Passingham D.
        • Mackay C.E.
        Regional deficits in brain volume in schizophrenia: A meta-analysis of voxel-based morphometry studies.
        Am J Psychiatry. 2005; 162: 2233-2245
        • Boos H.B.M.
        • Aleman A.
        • Cahn W.
        • Pol H.H.
        • Kahn R.S.
        Brain volumes in relatives of patients with schizophrenia: A meta-analysis.
        Arch Gen Psychiatry. 2007; 64: 297-304
        • Ongur D.
        • Cullen T.J.
        • Wolf D.H.
        • Rohan M.
        • Barreira P.
        • Zalesak M.
        • et al.
        The neural basis of relational memory deficits in schizophrenia.
        Arch Gen Psychiatry. 2006; 63: 356-365
        • Achim A.M.
        • Lepage M.
        Episodic memory-related activation in schizophrenia: Meta-analysis.
        Br J Psychiatry. 2005; 187: 500-509
        • Ragland J.D.
        • Gur R.C.
        • Valdez J.
        • Turetsky B.I.
        • Elliott M.
        • Kohler C.
        • et al.
        Event-related fMRI of frontotemporal activity during word encoding and recognition in schizophrenia.
        Am J Psychiatry. 2004; 161: 1004-1015
        • Thermenos H.W.
        • Seidman L.J.
        • Poldrack R.A.
        • Peace N.K.
        • Koch J.K.
        • Faraone S.V.
        • et al.
        Elaborative verbal encoding and altered anterior parahippocampal activation in adolescents and young adults at genetic risk for schizophrenia using fMRI.
        Biol Psychiatry. 2007; 61: 564-574
        • Manoach D.S.
        Prefrontal cortex dysfunction during working memory performance in schizophrenia: Reconciling discrepant findings.
        Schizophr Res. 2003; 60: 285-298
        • Callicott J.H.
        • Mattay V.S.
        • Verchinski B.A.
        • Marenco S.
        • Egan M.F.
        • Weinberger D.R.
        Complexity of prefrontal cortical dysfunction in schizophrenia: More than up or down.
        Am J Psychiatry. 2003; 160: 2209-2215
        • Thermenos H.W.
        • Seidman L.J.
        • Breiter H.
        • Goldstein J.M.
        • Goodman J.M.
        • Poldrack R.
        • et al.
        Functional magnetic resonance imaging during auditory verbal working memory in nonpsychotic relatives of persons with schizophrenia: A pilot study.
        Biol Psychiatry. 2004; 55: 490-500
        • Sommer I.E.C.
        • Ramsey N.F.
        • Mandl R.C.W.
        • Van Oel C.J.
        • Kahn R.S.
        Language activation in monozygotic twins discordant for schizophrenia.
        Br J Psychiatry. 2004; 184: 128-135
        • Brahmbhatt S.B.
        • Haut K.
        • Csernansky J.G.
        • Barch D.M.
        Neural correlates of verbal and nonverbal working memory deficits in individuals with schizophrenia and their high-risk siblings.
        Schizophr Res. 2006; 87: 191-204
        • Seidman L.J.
        • Thermenos H.W.
        • Poldrack R.A.
        • Peace N.K.
        • Koch J.K.
        • Faraone S.V.
        • et al.
        Altered brain activation in dorsolateral prefrontal cortex in adolescents and young adults at genetic risk for schizophrenia: An fMRI study of working memory.
        Schizophr Res. 2006; 85: 58-72
        • Bonner-Jackson A.
        • Csernansky J.G.
        • Barch D.M.
        Levels-of-processing effects in first-degree relatives of individuals with schizophrenia.
        Biol Psychiatry. 2007; 61: 1141-1147
        • Whyte M.-C.
        • Whalley H.C.
        • Simonotto E.
        • Flett S.
        • Shillcock R.
        • Marshall I.
        • et al.
        Event-related fMRI of word classification and successful word recognition in subjects at genetically enhanced risk of schizophrenia.
        Psychol Med. 2006; 36: 1427-1439
        • Williams N.M.
        • Green E.K.
        • Macgregor S.
        • Dwyer S.
        • Norton N.
        • Williams H.
        • et al.
        Variation at the DAOA/G30 locus influences susceptibility to major mood episodes but not psychosis in schizophrenia and bipolar disorder.
        Arch Gen Psychiatry. 2006; 63: 366-373