Advertisement
Archival Report| Volume 64, ISSUE 3, P226-234, August 01, 2008

Epistasis between Dopamine Regulating Genes Identifies a Nonlinear Response of the Human Hippocampus During Memory Tasks

  • Alessandro Bertolino
    Correspondence
    Address reprint requests to Alessandro Bertolino, M.D., Ph.D., Dipartimento di Scienze Neurologiche e Psichiatriche, Universita' degli Studi di Bari, Piazza Giulio Cesare, 9, 70124, Bari, Italy
    Affiliations
    Psychiatric Neuroscience Group, Section on Mental Disorders, Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy

    Department of Neuroradiology, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “Casa Sollievo della Sofferenza,” San Giovanni Rotondo (FG), Italy
    Search for articles by this author
  • Annabella Di Giorgio
    Affiliations
    Psychiatric Neuroscience Group, Section on Mental Disorders, Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
    Search for articles by this author
  • Giuseppe Blasi
    Affiliations
    Psychiatric Neuroscience Group, Section on Mental Disorders, Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
    Search for articles by this author
  • Fabio Sambataro
    Affiliations
    Psychiatric Neuroscience Group, Section on Mental Disorders, Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy

    Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
    Search for articles by this author
  • Grazia Caforio
    Affiliations
    Psychiatric Neuroscience Group, Section on Mental Disorders, Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
    Search for articles by this author
  • Lorenzo Sinibaldi
    Affiliations
    Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “Casa Sollievo della Sofferenza,” Mendel Section, Rome, Italy

    Department of Experimental Medicine, University ‘Sapienza', Rome, Italy.
    Search for articles by this author
  • Valeria Latorre
    Affiliations
    Psychiatric Neuroscience Group, Section on Mental Disorders, Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
    Search for articles by this author
  • Antonio Rampino
    Affiliations
    Psychiatric Neuroscience Group, Section on Mental Disorders, Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
    Search for articles by this author
  • Paolo Taurisano
    Affiliations
    Psychiatric Neuroscience Group, Section on Mental Disorders, Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
    Search for articles by this author
  • Leonardo Fazio
    Affiliations
    Psychiatric Neuroscience Group, Section on Mental Disorders, Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
    Search for articles by this author
  • Raffaella Romano
    Affiliations
    Psychiatric Neuroscience Group, Section on Mental Disorders, Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
    Search for articles by this author
  • Sofia Douzgou
    Affiliations
    Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “Casa Sollievo della Sofferenza,” Mendel Section, Rome, Italy

    Department of Experimental Medicine, University ‘Sapienza', Rome, Italy.
    Search for articles by this author
  • Teresa Popolizio
    Affiliations
    Department of Neuroradiology, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “Casa Sollievo della Sofferenza,” San Giovanni Rotondo (FG), Italy
    Search for articles by this author
  • Bhaskar Kolachana
    Affiliations
    Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
    Search for articles by this author
  • Marcello Nardini
    Affiliations
    Psychiatric Neuroscience Group, Section on Mental Disorders, Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
    Search for articles by this author
  • Daniel R. Weinberger
    Affiliations
    Genes, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
    Search for articles by this author
  • Bruno Dallapiccola
    Affiliations
    Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “Casa Sollievo della Sofferenza,” Mendel Section, Rome, Italy

    Department of Experimental Medicine, University ‘Sapienza', Rome, Italy.
    Search for articles by this author

      Background

      Dopamine modulation of neuronal activity in prefrontal cortex maps to an inverted U-curve. Dopamine is also an important factor in regulation of hippocampal mediated memory processing. Here, we investigated the effect of genetic variation of dopamine inactivation via catechol-O-methyltransferase (COMT) and the dopamine transporter (DAT) on hippocampal activity in healthy humans during different memory conditions.

      Methods

      Using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in 82 subjects matched for a series of demographic and genetic variables, we studied the effect of the COMT valine (Val)158methionine (Met) and the DAT 3′ variable number tandem repeat (VNTR) polymorphisms on function of the hippocampus during encoding of recognition memory and during working memory.

      Results

      Our results consistently demonstrated a double dissociation so that DAT 9-repeat carrier alleles modulated activity in the hippocampus in the exact opposite direction of DAT 10/10-repeat alleles based on COMT Val158Met genotype during different memory conditions. Similar results were evident in ventrolateral and dorsolateral prefrontal cortex.

      Conclusions

      These findings suggest that genetically determined dopamine signaling during memory processing maps to a nonlinear relationship also in the hippocampus. Our data also demonstrate in human brain epistasis of two genes implicated in dopamine signaling on brain activity during different memory conditions.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Squire L.R.
        • Zola S.M.
        Memory, memory impairment, and the medial temporal lobe.
        Cold Spring Harb Symp Quant Biol. 1996; 61: 185-195
        • Schacter D.L.
        • Wagner A.D.
        Medial temporal lobe activations in fMRI and PET studies of episodic encoding and retrieval.
        Hippocampus. 1999; 9: 7-24
        • Poldrack R.A.
        • Prabhakaran V.
        • Seger C.A.
        • Gabrieli J.D.
        Striatal activation during acquisition of a cognitive skill.
        Neuropsychology. 1999; 13: 564-574
        • Wagner A.D.
        • Desmond J.E.
        • Glover G.H.
        • Gabrieli J.D.
        Prefrontal cortex and recognition memory.
        Brain. 1998; 121: 1985-2002
        • Wagner A.D.
        • Schacter D.L.
        • Rotte M.
        • Koutstaal W.
        • Maril A.
        • Dale A.M.
        • et al.
        Building memories: Remembering and forgetting of verbal experiences as predicted by brain activity.
        Science. 1998; 281: 1188-1191
        • Buckner R.L.
        • Petersen S.E.
        • Ojemann J.G.
        • Miezin F.M.
        • Squire L.R.
        • Raichle M.E.
        Functional anatomical studies of explicit and implicit memory retrieval tasks.
        J Neurosci. 1995; 15: 12-29
        • Gabrieli J.D.
        • Poldrack R.A.
        • Desmond J.E.
        The role of left prefrontal cortex in language and memory.
        Proc Natl Acad Sci U S A. 1998; 95: 906-913
        • Passingham R.E.
        • Toni I.
        • Rushworth M.F.
        Specialisation within the prefrontal cortex: The ventral prefrontal cortex and associative learning.
        Exp Brain Res. 2000; 133: 103-113
        • Squire L.R.
        • Zola S.M.
        Episodic memory, semantic memory, and amnesia.
        Hippocampus. 1998; 8: 205-211
        • Kelley W.M.
        • Miezin F.M.
        • McDermott K.B.
        • Buckner R.L.
        • Raichle M.E.
        • Cohen N.J.
        • et al.
        Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding.
        Neuron. 1998; 20: 927-936
        • Wagner A.D.
        • Poldrack R.A.
        • Eldridge L.L.
        • Desmond J.E.
        • Glover G.H.
        • Gabrieli J.D.
        Material-specific lateralization of prefrontal activation during episodic encoding and retrieval.
        Neuroreport. 1998; 9: 3711-3717
        • Fernandez G.
        • Tendolkar I.
        Integrated brain activity in medial temporal and prefrontal areas predicts subsequent memory performance: Human declarative memory formation at the system level.
        Brain Res Bull. 2001; 55: 1-9
        • Karlsgodt K.H.
        • Shirinyan D.
        • van Erp T.G.
        • Cohen M.S.
        • Cannon T.D.
        Hippocampal activations during encoding and retrieval in a verbal working memory paradigm.
        Neuroimage. 2005; 25: 1224-1231
        • Meyer-Lindenberg A.S.
        • Olsen R.K.
        • Kohn P.D.
        • Brown T.
        • Egan M.F.
        • Weinberger D.R.
        • et al.
        Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia.
        Arch Gen Psychiatry. 2005; 62: 379-386
        • Callicott J.H.
        • Mattay V.S.
        • Bertolino A.
        • Finn K.
        • Coppola R.
        • Frank J.A.
        • et al.
        Physiological characteristics of capacity constraints in working memory as revealed by functional MRI.
        Cereb Cortex. 1999; 9: 20-26
        • D'Esposito M.
        • Postle B.R.
        • Ballard D.
        • Lease J.
        Maintenance versus manipulation of information held in working memory: An event-related fMRI study.
        Brain Cogn. 1999; 41: 66-86
        • D'Esposito M.
        • Postle B.R.
        • Rypma B.
        Prefrontal cortical contributions to working memory: Evidence from event-related fMRI studies.
        Exp Brain Res. 2000; 133: 3-11
        • Liu Y.P.
        • Wilkinson L.S.
        • Robbins T.W.
        Effects of acute and chronic buspirone on impulsive choice and efflux of 5-HT and dopamine in hippocampus, nucleus accumbens and prefrontal cortex.
        Psychopharmacology (Berl). 2004; 173: 175-185
        • Gasbarri A.
        • Sulli A.
        • Innocenzi R.
        • Pacitti C.
        • Brioni J.D.
        Spatial memory impairment induced by lesion of the mesohippocampal dopaminergic system in the rat.
        Neuroscience. 1996; 74: 1037-1044
        • Bernabeu R.
        • Cammarota M.
        • Izquierdo I.
        • Medina J.H.
        Involvement of hippocampal AMPA glutamate receptor changes and the cAMP/protein kinase A/CREB-P signalling pathway in memory consolidation of an avoidance task in rats.
        Braz J Med Biol Res. 1997; 30: 961-965
        • Jork R.
        • Grecksch G.
        • Matthies H.
        Apomorphine and glycoprotein synthesis during consolidation.
        Pharmacol Biochem Behav. 1982; 17: 11-13
        • Newman J.
        • Grace A.A.
        Binding across time: The selective gating of frontal and hippocampal systems modulating working memory and attentional states.
        Conscious Cogn. 1999; 8: 196-212
        • Frey U.
        • Schroeder H.
        • Matthies H.
        Dopaminergic antagonists prevent long-term maintenance of posttetanic LTP in the CA1 region of rat hippocampal slices.
        Brain Res. 1990; 522: 69-75
        • Li S.
        • Cullen W.K.
        • Anwyl R.
        • Rowan M.J.
        Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty.
        Nat Neurosci. 2003; 6: 526-531
        • Umegaki H.
        • Munoz J.
        • Meyer R.C.
        • Spangler E.L.
        • Yoshimura J.
        • Ikari H.
        • et al.
        Involvement of dopamine D(2) receptors in complex maze learning and acetylcholine release in ventral hippocampus of rats.
        Neuroscience. 2001; 103: 27-33
        • Takahashi H.
        • Kato M.
        • Hayashi M.
        • Okubo Y.
        • Takano A.
        • Ito H.
        • et al.
        Memory and frontal lobe functions; possible relations with dopamine D2 receptors in the hippocampus.
        Neuroimage. 2007; 34: 1643-1649
        • Adcock R.A.
        • Thangavel A.
        • Whitfield-Gabrieli S.
        • Knutson B.
        • Gabrieli J.D.
        Reward-motivated learning: Mesolimbic activation precedes memory formation.
        Neuron. 2006; 50: 507-517
        • Schott B.H.
        • Seidenbecher C.I.
        • Fenker D.B.
        • Lauer C.J.
        • Bunzeck N.
        • Bernstein H.G.
        • et al.
        The dopaminergic midbrain participates in human episodic memory formation: Evidence from genetic imaging.
        J Neurosci. 2006; 26: 1407-1417
        • Wittmann B.C.
        • Schott B.H.
        • Guderian S.
        • Frey J.U.
        • Heinze H.J.
        • Duzel E.
        Reward-related fMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation.
        Neuron. 2005; 45: 459-467
        • Matsumoto M.
        • Weickert C.S.
        • Akil M.
        • Lipska B.K.
        • Hyde T.M.
        • Herman M.M.
        • et al.
        Catechol O-methyltransferase mRNA expression in human and rat brain: Evidence for a role in cortical neuronal function.
        Neuroscience. 2003; 116: 127-137
        • Lewis D.A.
        • Melchitzky D.S.
        • Sesack S.R.
        • Whitehead R.E.
        • Auh S.
        • Sampson A.
        Dopamine transporter immunoreactivity in monkey cerebral cortex: Regional, laminar, and ultrastructural localization.
        J Comp Neurol. 2001; 432: 119-136
        • Sesack S.R.
        • Hawrylak V.A.
        • Guido M.A.
        • Levey A.I.
        Cellular and subcellular localization of the dopamine transporter in rat cortex.
        Adv Pharmacol. 1998; 42: 171-174
        • Cragg S.J.
        • Rice M.E.
        DAncing past the DAT at a DA synapse.
        Trends Neurosci. 2004; 27: 270-277
        • Chen J.
        • Lipska B.K.
        • Halim N.
        • Ma Q.D.
        • Matsumoto M.
        • Melhem S.
        • et al.
        Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): Effects on mRNA, protein, and enzyme activity in postmortem human brain.
        Am J Hum Genet. 2004; 75: 807-821
        • Gogos J.A.
        • Morgan M.
        • Luine V.
        • Santha M.
        • Ogawa S.
        • Pfaff D.
        • et al.
        Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior.
        Proc Natl Acad Sci U S A. 1998; 95: 9991-9996
        • Egan M.F.
        • Goldberg T.E.
        • Kolachana B.S.
        • Callicott J.H.
        • Mazzanti C.M.
        • Straub R.E.
        • et al.
        Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia.
        Proc Natl Acad Sci U S A. 2001; 98: 6917-6922
        • Mattay V.S.
        • Goldberg T.E.
        • Fera F.
        • Hariri A.R.
        • Tessitore A.
        • Egan M.F.
        • et al.
        Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine.
        Proc Natl Acad Sci U S A. 2003; 100: 6186-6191
        • Bertolino A.
        • Caforio G.
        • Blasi G.
        • De Candia M.
        • Latorre V.
        • Petruzzella V.
        • et al.
        Interaction of COMT Val108/158 Met genotype and olanzapine treatment on prefrontal cortical function in patients with schizophrenia.
        Am J Psychiatry. 2004; 161: 1798-1805
        • Bertolino A.
        • Caforio G.
        • Petruzzella V.
        • Latorre V.
        • Rubino V.
        • Dimalta S.
        • et al.
        Prefrontal dysfunction in schizophrenia controlling for COMT Val(158)Met genotype and working memory performance.
        Psychiatry Res. 2006; 147: 221-226
        • Blasi G.
        • Mattay V.S.
        • Bertolino A.
        • Elvevag B.
        • Callicott J.H.
        • Das S.
        • et al.
        Effect of catechol-O-methyltransferase val158met genotype on attentional control.
        J Neurosci. 2005; 25: 5038-5045
        • Meyer-Lindenberg A.
        • Nichols T.
        • Callicott J.H.
        • Ding J.
        • Kolachana B.
        • Buckholtz J.
        • et al.
        Impact of complex genetic variation in COMT on human brain function.
        Mol Psychiatry. 2006; 11 (797): 867-877
        • Bertolino A.
        • Rubino V.
        • Sambataro F.
        • Blasi G.
        • Latorre V.
        • Fazio L.
        • et al.
        Prefrontal-hippocampal coupling during memory processing is modulated by COMT Val158Met genotype.
        Biol Psychiatry. 2006; 60: 1250-1258
        • Smolka M.N.
        • Schumann G.
        • Wrase J.
        • Grusser S.M.
        • Flor H.
        • Mann K.
        • et al.
        Catechol-O-methyltransferase val158met genotype affects processing of emotional stimuli in the amygdala and prefrontal cortex.
        J Neurosci. 2005; 25: 836-842
        • Morice E.
        • Billard J.M.
        • Denis C.
        • Mathieu F.
        • Betancur C.
        • Epelbaum J.
        • et al.
        Parallel loss of hippocampal LTD and cognitive flexibility in a genetic model of hyperdopaminergia.
        Neuropsychopharmacology. 2007; 32: 2108-2116
        • Vandenbergh D.J.
        • Persico A.M.
        • Hawkins A.L.
        • Griffin C.A.
        • Li X.
        • Jabs E.W.
        • et al.
        Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR.
        Genomics. 1992; 14: 1104-1106
        • VanNess S.H.
        • Owens M.J.
        • Kilts C.D.
        The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density.
        BMC Genet. 2005; 6: 55
        • Heinz A.
        • Goldman D.
        • Jones D.W.
        • Palmour R.
        • Hommer D.
        • Gorey J.G.
        • et al.
        Genotype influences in vivo dopamine transporter availability in human striatum.
        Neuropsychopharmacology. 2000; 22: 133-139
        • Bertolino A.
        • Blasi G.
        • Latorre V.
        • Rubino V.
        • Rampino A.
        • Sinibaldi L.
        • et al.
        Additive effects of genetic variation in dopamine regulating genes on working memory cortical activity in human brain.
        J Neurosci. 2006; 26: 3918-3922
        • Yacubian J.
        • Sommer T.
        • Schroeder K.
        • Glascher J.
        • Kalisch R.
        • Leuenberger B.
        • et al.
        Gene-gene interaction associated with neural reward sensitivity.
        Proc Natl Acad Sci U S A. 2007; 104: 8125-8130
        • Cheon K.A.
        • Ryu Y.H.
        • Kim Y.K.
        • Namkoong K.
        • Kim C.H.
        • Lee J.D.
        Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder.
        Eur J Nucl Med Mol Imaging. 2003; 30: 306-311
        • Durston S.
        • Fossella J.A.
        • Casey B.J.
        • Hulshoff Pol H.E.
        • Galvan A.
        • Schnack H.G.
        • et al.
        Differential effects of DRD4 and DAT1 genotype on fronto-striatal gray matter volumes in a sample of subjects with attention deficit hyperactivity disorder, their unaffected siblings, and controls.
        Mol Psychiatry. 2005; 10: 678-685
        • Gilbert D.L.
        • Wang Z.
        • Sallee F.R.
        • Ridel K.R.
        • Merhar S.
        • Zhang J.
        • et al.
        Dopamine transporter genotype influences the physiological response to medication in ADHD.
        Brain. 2006; 129: 2038-2046
        • Jacobsen L.K.
        • Staley J.K.
        • Zoghbi S.S.
        • Seibyl J.P.
        • Kosten T.R.
        • Innis R.B.
        • et al.
        Prediction of dopamine transporter binding availability by genotype: A preliminary report.
        Am J Psychiatry. 2000; 157: 1700-1703
        • Laucht M.
        • Skowronek M.H.
        • Becker K.
        • Schmidt M.H.
        • Esser G.
        • Schulze T.G.
        • et al.
        Interacting effects of the dopamine transporter gene and psychosocial adversity on attention-deficit/hyperactivity disorder symptoms among 15-year-olds from a high-risk community sample.
        Arch Gen Psychiatry. 2007; 64: 585-590
        • van Dyck C.H.
        • Malison R.T.
        • Jacobsen L.K.
        • Seibyl J.P.
        • Staley J.K.
        • Laruelle M.
        • et al.
        Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene.
        J Nucl Med. 2005; 46: 745-751
        • Hariri A.R.
        • Goldberg T.E.
        • Mattay V.S.
        • Kolachana B.S.
        • Callicott J.H.
        • Egan M.F.
        • et al.
        Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance.
        J Neurosci. 2003; 23: 6690-6694
        • Squire L.R.
        • Stark C.E.
        • Clark R.E.
        The medial temporal lobe.
        Annu Rev Neurosci. 2004; 27: 279-306
        • Grace A.A.
        Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia.
        Neuroscience. 1991; 41: 1-24
        • Maldjian J.A.
        • Laurienti P.J.
        • Kraft R.A.
        • Burdette J.H.
        An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets.
        Neuroimage. 2003; 19: 1233-1239
        • Nichols E.A.
        • Kao Y.C.
        • Verfaellie M.
        • Gabrieli J.D.
        Working memory and long-term memory for faces: Evidence from fMRI and global amnesia for involvement of the medial temporal lobes.
        Hippocampus. 2006; 16: 604-616
        • Postle B.R.
        • Berger J.S.
        • D'Esposito M.
        Functional neuroanatomical double dissociation of mnemonic and executive control processes contributing to working memory performance.
        Proc Natl Acad Sci U S A. 1999; 96: 12959-12964
        • Callicott J.H.
        • Bertolino A.
        • Mattay V.S.
        • Langheim F.J.
        • Duyn J.
        • Coppola R.
        • et al.
        Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited.
        Cereb Cortex. 2000; 10: 1078-1092
        • Bookheimer S.Y.
        • Strojwas M.H.
        • Cohen M.S.
        • Saunders A.M.
        • Pericak-Vance M.A.
        • Mazziotta J.C.
        • et al.
        Patterns of brain activation in people at risk for Alzheimer's disease.
        N Engl J Med. 2000; 343: 450-456
        • Egan M.F.
        • Kojima M.
        • Callicott J.H.
        • Goldberg T.E.
        • Kolachana B.S.
        • Bertolino A.
        • et al.
        The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function.
        Cell. 2003; 112: 257-269
        • Callicott J.H.
        • Straub R.E.
        • Pezawas L.
        • Egan M.F.
        • Mattay V.S.
        • Hariri A.R.
        • et al.
        Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia.
        Proc Natl Acad Sci U S A. 2005; 102: 8627-8632
        • Egan M.F.
        • Straub R.E.
        • Goldberg T.E.
        • Yakub I.
        • Callicott J.H.
        • Hariri A.R.
        • et al.
        Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia.
        Proc Natl Acad Sci U S A. 2004; 101: 12604-12609
        • Vijayraghavan S.
        • Wang M.
        • Birnbaum S.G.
        • Williams G.V.
        • Arnsten A.F.
        Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory.
        Nat Neurosci. 2007; 10: 376-384
        • Williams G.V.
        • Goldman-Rakic P.S.
        Modulation of memory fields by dopamine D1 receptors in prefrontal cortex.
        Nature. 1995; 376: 572-575
        • Mehta M.A.
        • Owen A.M.
        • Sahakian B.J.
        • Mavaddat N.
        • Pickard J.D.
        • Robbins T.W.
        Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain.
        J Neurosci. 2000; 20: RC65
        • Seamans J.K.
        • Yang C.R.
        The principal features and mechanisms of dopamine modulation in the prefrontal cortex.
        Prog Neurobiol. 2004; 74: 1-58
        • Lisman J.E.
        • Grace A.A.
        The hippocampal-VTA loop: Controlling the entry of information into long-term memory.
        Neuron. 2005; 46: 703-713
        • Carlborg O.
        • Haley C.S.
        Epistasis: Too often neglected in complex trait studies?.
        Nat Rev Genet. 2004; 5: 618-625
        • Stark C.E.
        • Squire L.R.
        When zero is not zero: The problem of ambiguous baseline conditions in fMRI.
        Proc Natl Acad Sci U S A. 2001; 98: 12760-12766
        • Meyer-Lindenberg A.
        • Nicodemus K.K.
        • Egan M.F.
        • Callicott J.H.
        • Mattay V.
        • Weinberger D.R.
        False positives in imaging genetics.
        Neuroimage. 2007; ([published online ahead of print December 15, 2007])
        • Tan H.Y.
        • Chen Q.
        • Sust S.
        • Buckholtz J.W.
        • Meyers J.D.
        • Egan M.F.
        • et al.
        Epistasis between catechol-O-methyltransferase and type II metabotropic glutamate receptor 3 genes on working memory brain function.
        Proc Natl Acad Sci U S A. 2007; 104: 12536-12541