Advertisement
Archival Report| Volume 64, ISSUE 3, P192-202, August 01, 2008

Decreased Volume of the Brain Reward System in Alcoholism

  • Nikos Makris
    Affiliations
    Athinoula A. Martinos Center, Harvard Medical School Departments of Neurology, Psychiatry, and Radiology Services, Boston, Massachusetts

    Center for Morphometric Analysis, Massachusetts General Hospital, Boston, Massachusetts

    VA Healthcare System, Boston Campus, Boston, Massachusetts

    Departments of Psychiatry, Neurology, and Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
    Search for articles by this author
  • Marlene Oscar-Berman
    Correspondence
    Address reprint requests to Marlene Oscar-Berman, Ph.D., Boston University School of Medicine, Suite L-815, 715 Albany Street, Boston, MA 02118
    Affiliations
    VA Healthcare System, Boston Campus, Boston, Massachusetts

    Departments of Psychiatry, Neurology, and Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts
    Search for articles by this author
  • Sharon Kim Jaffin
    Affiliations
    Athinoula A. Martinos Center, Harvard Medical School Departments of Neurology, Psychiatry, and Radiology Services, Boston, Massachusetts

    Center for Morphometric Analysis, Massachusetts General Hospital, Boston, Massachusetts

    Radiology Computer Aided Diagnostics Laboratory, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts.
    Search for articles by this author
  • Steven M. Hodge
    Affiliations
    Athinoula A. Martinos Center, Harvard Medical School Departments of Neurology, Psychiatry, and Radiology Services, Boston, Massachusetts

    Center for Morphometric Analysis, Massachusetts General Hospital, Boston, Massachusetts

    Radiology Computer Aided Diagnostics Laboratory, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts.
    Search for articles by this author
  • David N. Kennedy
    Affiliations
    Athinoula A. Martinos Center, Harvard Medical School Departments of Neurology, Psychiatry, and Radiology Services, Boston, Massachusetts

    Center for Morphometric Analysis, Massachusetts General Hospital, Boston, Massachusetts
    Search for articles by this author
  • Verne S. Caviness
    Affiliations
    Athinoula A. Martinos Center, Harvard Medical School Departments of Neurology, Psychiatry, and Radiology Services, Boston, Massachusetts

    Center for Morphometric Analysis, Massachusetts General Hospital, Boston, Massachusetts
    Search for articles by this author
  • Ksenija Marinkovic
    Affiliations
    Athinoula A. Martinos Center, Harvard Medical School Departments of Neurology, Psychiatry, and Radiology Services, Boston, Massachusetts

    Center for Morphometric Analysis, Massachusetts General Hospital, Boston, Massachusetts
    Search for articles by this author
  • Hans C. Breiter
    Affiliations
    Athinoula A. Martinos Center, Harvard Medical School Departments of Neurology, Psychiatry, and Radiology Services, Boston, Massachusetts

    Center for Morphometric Analysis, Massachusetts General Hospital, Boston, Massachusetts
    Search for articles by this author
  • Gregory P. Gasic
    Affiliations
    Athinoula A. Martinos Center, Harvard Medical School Departments of Neurology, Psychiatry, and Radiology Services, Boston, Massachusetts

    Center for Morphometric Analysis, Massachusetts General Hospital, Boston, Massachusetts
    Search for articles by this author
  • Gordon J. Harris
    Affiliations
    Radiology Computer Aided Diagnostics Laboratory, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts.
    Search for articles by this author

      Background

      Reinforcement of behavioral responses involves a complex cerebral circuit engaging specific neuronal networks that are modulated by cortical oversight systems affiliated with emotion, memory, judgment, and decision making (collectively referred to in this study as the “extended reward and oversight system” or “reward network”). We examined whether reward-network brain volumes are reduced in alcoholics and how volumes of subcomponents within this system are correlated with memory and drinking history.

      Methods

      Morphometric analysis was performed on magnetic resonance brain scans in 21 abstinent long-term chronic alcoholic men and 21 healthy control men, group-matched on age, verbal IQ, and education. We derived volumes of total brain and volumes of cortical and subcortical reward-related structures including the dorsolateral-prefrontal, orbitofrontal, cingulate cortices, and the insula, as well as the amygdala, hippocampus, nucleus accumbens septi (NAc), and ventral diencephalon.

      Results

      Morphometric analyses of reward-related regions revealed decreased total reward-network volume in alcoholic subjects. Volume reduction was most pronounced in right dorsolateral-prefrontal cortex, right anterior insula, and right NAc, as well as left amygdala. In alcoholics, NAc and anterior insula volumes increased with length of abstinence, and total reward-network and amygdala volumes correlated positively with memory scores.

      Conclusions

      The observation of decreased reward-network volume suggests that alcoholism is associated with alterations in this neural reward system. These structural reward system deficits and their correlation with memory scores elucidate underlying structural-functional relationships between alcoholism and emotional and cognitive processes.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bowirrat A.
        • Oscar-Berman M.
        Relationship between dopaminergic neurotransmission, alcoholism, and reward deficiency syndrome.
        Am J Med Genet B Neuropsychiatr Genet. 2005; 132: 29-37
        • Oscar-Berman M.
        • Bowirrat A.
        Genetic influences in emotional dysfunction and alcoholism-related brain damage.
        Neuropsychiatr Dis Treat. 2005; 1: 211-229
        • Volkow N.D.
        • Wise R.A.
        How can drug addiction help us understand obesity?.
        Nat Neurosci. 2005; 8: 555-560
        • Heimer L.
        • Van Hoesen G.W.
        The limbic lobe and its output channels: implications for emotional functions and adaptive behavior.
        Neurosci Biobehav Rev. 2006; 30: 126-147
        • Alheid G.F.
        • Heimer L.
        New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: The striatopallidal, amygdaloid, and corticopetal components of substantia innominata.
        Neuroscience. 1988; 27: 1-39
        • LeDoux J.E.
        • Iwata J.
        • Cicchetti P.
        • Reis D.J.
        Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear.
        J Neurosci. 1988; 8: 2517-2529
        • LeDoux J.E.
        • Farb C.R.
        • Romanski L.M.
        Overlapping projections to the amygdala and striatum from auditory processing areas of the thalamus and cortex.
        Neurosci Lett. 1991; 134: 139-144
        • Groenewegen H.J.
        • Berendse H.W.
        • Wolters J.G.
        • Lohman A.H.
        The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization.
        Prog Brain Res. 1990; 85 (discussion 116–118): 95-116
        • McDonald A.J.
        Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat.
        Neuroscience. 1991; 44: 1-14
        • Schoenbaum G.
        • Chiba A.A.
        • Gallagher M.
        Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning.
        Nat Neurosci. 1998; 1: 155-159
        • Swanson L.W.
        • Petrovich G.D.
        What is the amygdala?.
        Trends Neurosci. 1998; 21: 323-331
        • Everitt B.J.
        • Parkinson J.A.
        • Olmstead M.C.
        • Arroyo M.
        • Robledo P.
        • Robbins T.W.
        Associative processes in addiction and reward.
        Ann N Y Acad Sci. 1999; 877: 412-438
        • Price J.L.
        Prefrontal cortical networks related to visceral function and mood.
        Ann N Y Acad Sci. 1999; 877: 383-396
        • Schaefer A.
        • Braver T.S.
        • Reynolds J.R.
        • Burgess G.C.
        • Yarkoni T.
        • Gray J.R.
        Individual differences in amygdala activity predict response speed during working memory.
        J Neurosci. 2006; 26: 10120-10128
        • Breiter H.C.
        • Gasic G.P.
        • Makris N.
        Imaging the neural system for motivated behavior and their dysfunction in neuropsychiatric illness.
        in: Deisboeck T.S. Kresh J.Y. Complex Systems Science in Biomedicine. Springer, New York2006: 763-810
        • Oscar-Berman M.
        • Marinkovic K.
        Alcohol: Effects on neurobehavioral functions and the brain.
        Neuropsychol Rev. 2007; 17: 239-257
        • Pfefferbaum A.
        • Adalsteinsson E.
        • Sullivan E.V.
        Frontal circuitry degradation marks healthy adult aging: Evidence from diffusion tensor imaging.
        Neuroimage. 2005; 26: 891-899
        • Sullivan E.V.
        • Deshmukh A.
        • Desmond J.E.
        • Lim K.O.
        • Pfefferbaum A.
        Cerebellar volume decline in normal aging, alcoholism, and Korsakoff's syndrome: relation to ataxia.
        Neuropsychology. 2000; 14: 341-352
        • Schneider F.
        • Habel U.
        • Wagner M.
        • Franke P.
        • Salloum J.B.
        • Shah N.J.
        • et al.
        Subcortical correlates of craving in recently abstinent alcoholic patients.
        Am J Psychiatry. 2001; 158: 1075-1083
        • Szabo Z.
        • Owonikoko T.
        • Peyrot M.
        • Varga J.
        • Mathews W.B.
        • Ravert H.T.
        • et al.
        Positron emission tomography imaging of the serotonin transporter in subjects with a history of alcoholism.
        Biol Psychiatry. 2004; 55: 766-771
        • Sullivan E.V.
        • Marsh L.
        • Mathalon D.H.
        • Lim K.O.
        • Pfefferbaum A.
        Anterior hippocampal volume deficits in nonamnesic, aging chronic alcoholics.
        Alcohol Clin Exp Res. 1995; 19: 110-122
        • Agartz I.
        • Momenan R.
        • Rawlings R.R.
        • Kerich M.J.
        • Hommer D.W.
        Hippocampal volume in patients with alcohol dependence.
        Arch Gen Psychiatry. 1999; 56: 356-363
        • Laakso M.P.
        • Vaurio O.
        • Savolainen L.
        • Repo E.
        • Soininen H.
        • Aronen H.J.
        • Tiihonen J.
        A volumetric MRI study of the hippocampus in type 1 and 2 alcoholism.
        Behav Brain Res. 2000; 109: 177-186
        • Hyman S.E.
        • Nestler E.J.
        The Molecular Foundations of Psychiatry.
        American Psychiatric Press, Washington, DC1993
        • Briggs G.G.
        • Nebes R.D.
        Patterns of hand preference in a student population.
        Cortex. 1975; 11: 230-238
        • Oldfield R.
        The assessment and analysis of handedness.
        Neuropsychologia. 1971; 9: 97-113
        • Robins L.
        • Helzer J.
        • Cottler L.
        • Goldring E.
        NIMH Diagnostic Interview Schedule: Version III—Revised (DIS-III-R).
        Washington University, St. Louis, MO1989
        • APA
        Diagnostic and Statistical Manual of Mental Disorders (DSM-IV).
        American Psychiatric Association, Washington, DC1994
        • Cahalan V.
        • Cisin I.
        • Crossley H.M.
        American Drinking Practices: A National Study of Drinking Behavior and Attitudes, Report 6.
        Rutgers Center for Alcohol Studies, New Brunswick, NJ1969
        • Wechsler D.
        Wechsler Adult Intelligence Scale—III.
        The Psychological Corporation, San Antonio, TX1997
        • Wechsler D.
        Wechsler Memory Scale—III.
        The Psychological Corporation, San Antonio, TX1997
        • Hamilton M.A.
        A rating scale for depression.
        J Neurol Neurosurg Psychiatry. 1960; 23: 56-62
        • McNair D.M.
        • Lorr M.
        • Droppleman L.F.
        Manual for the Profile of Mood States.
        Educational and Industrial Testing Service, San Diego, CA1981
        • Zuckerman M.
        • Lubin B.
        Multiple Affect Adjective Check List.
        Educational and Industrial Testing Service, San Diego, CA1965
        • Oscar-Berman M.
        • Schendan H.E.
        Asymmetries of brain function in alcoholism: Relationship to aging.
        in: Obler L. Connor L.T. Neurobehavior of Language and Cognition: Studies of Normal Aging and Brain Damage. Kluwer Academic, New York2000: 213-240
        • Ellis R.J.
        • Oscar-Berman M.
        Alcoholism, aging, and functional cerebral asymmetries.
        Psychol Bull. 1989; 106: 128-147
        • Rourke S.B.
        • Loberg T.
        The neurobehavioral correlates of alcoholism.
        in: Grant I. Nixon S.J. Neuropsychological Assessment of Neuropsychiatric Disorders. 2nd ed. Oxford University Press, New York1996: 423-485
        • U.S. Army
        Army Individual Test Battery.
        War Department, Adjutant General's Office, Washington, DC1944
        • Heaton R.
        • Chelune G.
        • Talley J.
        • Kay G.
        • Curtis G.
        Wisconsin Card Sorting Test: Computer Version 4.
        Psychological Assessment Resources, Lutz, FL1993
        • Berg E.A.
        A simple objective technique for measuring flexibility in thinking.
        J Gen Psychol. 1948; 39: 15-22
        • Grant D.A.
        • Berg E.A.
        A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem.
        J Exp Psychol. 1948; 38: 404-411
        • Benton A.L.
        • Hamsher K.
        Multilingual Aphasia Examination.
        University of Iowa, Iowa City1976
        • Kennedy D.N.
        • Filipek P.A.
        • Caviness Jr., V.S.
        Anatomic segmentation and volumetric calculations in nuclear magnetic resonance imaging.
        IEEE Trans Med Imaging. 1989; 8: 1-7
        • Filipek P.A.
        • Richelme C.
        • Kennedy D.N.
        • Caviness Jr., V.S.
        The young adult human brain: an MRI-based morphometric analysis.
        Cereb Cortex. 1994; 4: 344-360
        • Caviness Jr., V.S.
        • Kennedy D.N.
        • Richelme C.
        • Rademacher J.
        • Filipek P.A.
        The human brain age 7–11 years: A volumetric analysis based on magnetic resonance images.
        Cereb Cortex. 1996; 6: 726-736
        • Makris N.
        • Meyer J.W.
        • Bates J.F.
        • Yeterian E.H.
        • Kennedy D.N.
        • Caviness V.S.
        MRI-Based topographic parcellation of human cerebral white matter and nuclei II.
        Neuroimage. 1999; 9: 18-45
        • Caviness Jr, V.S.
        • Meyer J.W.
        • Makris N.
        • Kennedy D.N.
        MRI-based topographic parcellation of the human neocortex: An anatomically specified method with estimate of reliability.
        J Cogn Neurosci. 1996; 8: 566-587
        • Seidman L.J.
        • Faraone S.V.
        • Goldstein J.M.
        • Goodman J.M.
        • Kremen W.S.
        • Toomey R.
        • et al.
        Thalamic and amygdala-hippocampal volume reductions in first-degree relatives of patients with schizophrenia: An MRI-based morphometric analysis.
        Biol Psychiatry. 1999; 46: 941-954
        • Frazier J.A.
        • Chiu S.
        • Breeze J.L.
        • Makris N.
        • Lange N.
        • Kennedy D.N.
        • et al.
        Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder.
        Am J Psychiatry. 2005; 162: 1256-1265
        • Goldstein J.M.
        • Goodman J.M.
        • Seidman L.J.
        • Kennedy D.N.
        • Makris N.
        • Lee H.
        • et al.
        Cortical abnormalities in schizophrenia identified by structural magnetic resonance imaging.
        Arch Gen Psychiatry. 1999; 56: 537-547
        • Goldstein J.M.
        • Seidman L.J.
        • Horton N.J.
        • Makris N.
        • Kennedy D.N.
        • Caviness Jr, V.S.
        • et al.
        Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging.
        Cereb Cortex. 2001; 11: 490-497
        • De Fosse L.
        • Hodge S.M.
        • Makris N.
        • Kennedy D.N.
        • Caviness Jr, V.S.
        • McGrath L.
        • et al.
        Language-association cortex asymmetry in autism and specific language impairment.
        Ann Neurol. 2004; 56: 757-766
        • Herbert M.R.
        • Ziegler D.A.
        • Deutsch C.K.
        • O'Brien L.M.
        • Lange N.
        • Bakardjiev A.
        • et al.
        Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys.
        Brain. 2003; 126: 1182-1192
        • Makris N.
        • Gasic G.P.
        • Seidman L.J.
        • Goldstein J.M.
        • Gastfriend D.R.
        • Elman I.
        • et al.
        Decreased absolute amygdala volume in cocaine addicts.
        Neuron. 2004; 44: 729-740
        • Beresford T.P.
        • Arciniegas D.B.
        • Alfers J.
        • Clapp L.
        • Martin B.
        • Du Y.
        • et al.
        Hippocampus volume loss due to chronic heavy drinking.
        Alcohol Clin Exp Res. 2006; 30: 1866-1870
        • Hill S.Y.
        • De Bellis M.D.
        • Keshavan M.S.
        • Lowers L.
        • Shen S.
        • Hall J.
        • Pitts T.
        Right amygdala volume in adolescent and young adult offspring from families at high risk for developing alcoholism.
        Biol Psychiatry. 2001; 49: 894-905
        • Fuster J.M.
        Cortex and Mind.
        Oxford University Press, New York2003
        • Fuster J.M.
        The cognit: a network model of cortical representation.
        Int J Psychophysiol. 2006; 60: 125-132
        • Fuster J.M.
        The Prefrontal Cortex.
        Lippincott-Raven, Philadelphia1997
        • Goldman-Rakic P.S.
        Circuitry of primate prefrontal cortex and regulation of behavior by representational memory.
        in: Mountcastle V.B. Plum F. Handbook of Physiology: The Nervous System, Vol. V: Higher Functions of the Brain. American Physiological Society, Bethesda, MD1987: 373-417
        • Nixon S.J.
        • Parsons O.A.
        Application of the Tridimensional Personality Questionnaire to a population of alcoholics and other substance abusers.
        Alcohol Clin Exp Res. 1990; 14: 513-517
        • Sullivan E.V.
        Neuropsychological vulnerability to alcoholism: Evidence from neuroimaging studies.
        in: Noronha A. Eckardt M. Warren K. Review of NIAAA's Neuroscience and Behavioral Research (Monograph no. 34). National Institute of Alcohol Abuse and Alcoholism, Bethesda, MD2000: 473-508
        • Moselhy H.F.
        • Georgiou G.
        • Kahn A.
        Frontal lobe changes in alcoholism: A review of the literature.
        Alcohol Alcohol. 2001; 36: 357-368
        • Kril J.J.
        • Halliday G.M.
        • Svoboda M.D.
        • Cartwright H.
        The cerebral cortex is damaged in chronic alcoholics.
        Neuroscience. 1997; 79: 983-998
        • Harper C.
        • Dixon G.
        • Sheedy D.
        • Garrick T.
        Neuropathological alterations in alcoholic brains.
        Prog Neuropsychopharmacol Biol Psychiatry. 2003; 27: 951-961
        • Dao-Castellana M.H.
        • Samson Y.
        • Legault F.
        • Martinot J.L.
        • Aubin H.J.
        • Crouzel C.
        • et al.
        Frontal dysfunction in neurologically normal chronic alcoholic subjects: metabolic and neuropsychological findings.
        Psychol Med. 1998; 28: 1039-1048
        • Sullivan E.V.
        • Mathalon D.H.
        • Zipursky R.B.
        • Kersteen-Tucker Z.
        • Knight R.T.
        • Pfefferbaum A.
        Factors of the Wisconsin Card Sorting Test as measures of frontal-lobe function in schizophrenia and in chronic alcoholism.
        Psychiatry Res. 1993; 46: 175-199
        • Ratti M.T.
        • Bo P.
        • Giardini A.
        • Soragna D.
        Chronic alcoholism and the frontal lobe: Which executive functions are imparied?.
        Acta Neurol Scand. 2002; 105: 276-281
        • Uekermann J.
        • Daum I.
        • Schlebusch P.
        • Wiebel B.
        • Trenckmann U.
        Depression and cognitive functioning in alcoholism.
        Addiction. 2003; 98: 1521-1529
        • Uekermann J.
        • Daum I.
        • Schlebusch P.
        • Trenckmann U.
        Processing of affective stimuli in alcoholism.
        Cortex. 2005; 41: 189-194
        • Oscar-Berman M.
        Brain.
        in: Craighead W.E. Nemeroff C.B. The Concise Encyclopedia of Psychology and Behaviour Science. Wiley, New York2004: 135-137
        • Demir B.
        • Ulug B.
        • Lay Ergun E.
        • Erbas B.
        Regional cerebral blood flow and neuropsychological functioning in early and late onset alcoholism.
        Psychiatry Res. 2002; 115: 115-125
        • Noel X.
        • Sferrazza R.
        • Van Der Linden M.
        • Paternot J.
        • Verhas M.
        • Hanak C.
        • et al.
        Contribution of frontal cerebral blood flow measured by (99m)Tc-Bicisate spect and executive function deficits to predicting treatment outcome in alcohol-dependent patients.
        Alcohol Alcohol. 2002; 37: 347-354
        • Rangaswamy M.
        • Porjesz B.
        • Ardekani B.A.
        • Choi S.J.
        • Tanabe J.L.
        • Lim K.O.
        • Begleiter H.
        A functional MRI study of visual oddball: Evidence for frontoparietal dysfunction in subjects at risk for alcoholism.
        Neuroimage. 2004; 21: 329-339
        • Pfefferbaum A.
        • Sullivan E.V.
        • Mathalon D.H.
        • Lim K.O.
        Frontal lobe volume loss observed with magnetic resonance imaging in older chronic alcoholics.
        Alcohol Clin Exp Res. 1997; 21: 521-529
        • Kubota M.
        • Nakazaki S.
        • Hirai S.
        • Saeki N.
        • Yamaura A.
        • Kusaka T.
        Alcohol consumption and frontal lobe shrinkage: Study of 1432 non-alcoholic subjects.
        J Neurol Neurosurg Psychiatry. 2001; 71: 104-106
        • Pfefferbaum A.
        • Sullivan E.V.
        • Mathalon D.H.
        • Shear P.K.
        • Rosenbloom M.J.
        • Lim K.O.
        Longitudinal changes in magnetic resonance imaging brain volumes in abstinent and relapsed alcoholics.
        Alcohol Clin Exp Res. 1995; 19: 1177-1191
        • Cardenas V.A.
        • Studholme C.
        • Gazdzinski S.
        • Durazzo T.C.
        • Meyerhoff D.J.
        Deformation-based morphometry of brain changes in alcohol dependence and abstinence.
        Neuroimage. 2007; 34: 879-887
        • Pfefferbaum A.
        • Sullivan E.V.
        • Rosenbloom M.J.
        • Mathalon D.H.
        • Lim K.O.
        A controlled study of cortical gray matter and ventricular changes in alcoholic men over a 5-year interval.
        Arch Gen Psychiatry. 1998; 55: 905-912
        • Schmahmann J.D.
        • Pandya D.N.
        Fiber Pathways of the Brain.
        Oxford University Press, New York2006
        • LaBar K.S.
        • Cabeza R.
        Cognitive neuroscience of emotional memory.
        Nat Rev Neurosci. 2006; 7: 54-64
        • Barbas H.
        Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices.
        Brain Res Bull. 2000; 52: 319-330
        • Petrides M.
        • Pandya D.N.
        Association pathways of the prefrontal cortex and functional observations.
        in: Stuss D.T. Knight R.T. Principles of Frontal Lobe Function. Oxford University Press, New York2002: 31-50
        • Johnston J.B.
        Further contribution to the study of the evolution of the forebrain.
        J Comp Neurol. 1923; 35: 337-481
        • De Olmos J.S.
        A cupric-silver method for impregnation of terminal axon degeneration and its further use in staining granular argyrophilic neurons.
        Brain Behav Evol. 1969; 2: 213-237
        • De Olmos J.S.
        • Ingram W.R.
        The projection field of the stria terminalis in the rat brain.
        J Comp Neurol. 1972; 146: 303-334
        • De Olmos J.S.
        • Heimer L.
        The concepts of the ventral striatopallidal system and extended amygdala.
        Ann N Y Acad Sci. 1999; 877: 1-32
        • Koob G.F.
        The role of the striatopallidal and extended amygdala systems in drug addiction.
        Ann N Y Acad Sci. 1999; 877: 445-460
        • Blum K.
        • Sheridan P.J.
        • Wood R.C.
        • Braverman E.R.
        • Chen T.J.
        • Cull J.G.
        • Comings D.E.
        The D2 dopamine receptor gene as a determinant of reward deficiency syndrome.
        J R Soc Med. 1996; 89: 396-400
        • Begleiter H.
        • Porjesz B.
        What is inherited in the predisposition toward alcoholism?.
        Alcohol Clin Exp Res. 1999; 23: 1125-1135
        • Volkow N.D.
        • Wang G.J.
        • Begleiter H.
        • Porjesz B.
        • Fowler J.S.
        • Telang F.
        • et al.
        High levels of dopamine D2 receptors in unaffected members of alcoholic families: Possible protective factors.
        Arch Gen Psychiatry. 2006; 63: 999-1008
        • Heinz A.
        • Siessmeier T.
        • Wrase J.
        • Buchholz H.G.
        • Grunder G.
        • Kumakura Y.
        • et al.
        Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: A combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients.
        Am J Psychiatry. 2005; 162: 1515-1520
        • Wikler A.
        Dynamics of drug dependence.
        Arch Gen Psychiatry. 1973; 28: 611-616
        • Koob G.F.
        Neurobiological mechanisms in cocaine and opiate dependence.
        Res Publ Assoc Res Nerv Ment Dis. 1992; 70: 79-92
        • Adolphs R.
        • Jansari A.
        • Tranel D.
        Hemispheric perception of emotional valence from facial expressions.
        Neuropsychology. 2001; 15: 516-524
      1. Hugdahl K. Davidson R.J. The Asymmetrical Brain. MIT Press, Cambridge, MA2004
        • Anokhin A.P.
        • Heath A.C.
        • Myers E.
        Genetic and environmental influences on frontal EEG asymmetry: A twin study.
        Biol Psychol. 2006; 71: 289-295
        • Sun T.
        • Walsh C.A.
        Molecular approaches to brain asymmetry and handedness.
        Nat Rev Neurosci. 2006; 7: 655-662
        • Sun T.
        • Patoine C.
        • Abu-Khalil A.
        • Visvader J.
        • Sum E.
        • Cherry T.J.
        • et al.
        Early asymmetry of gene transcription in embryonic human left and right cerebral cortex.
        Science. 2005; 308: 1794-1798
        • Swanson L.W.
        The amygdala and its place in the cerebral hemisphere.
        Ann N Y Acad Sci. 2003; 985: 174-184
        • Corbit L.H.
        • Balleine B.W.
        Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer.
        J Neurosci. 2005; 25: 962-970
        • Aggleton J.P.
        The Amygdala: A Functional Analysis.
        2nd ed. Oxford University Press, Oxford2000
        • Mann K.
        • Ackermann K.
        • Croissant B.
        • Mundle G.
        • Nakovics H.
        • Diehl A.
        Neuroimaging of gender differences in alcohol dependence: Are women more vulnerable?.
        Alcohol Clin Exp Res. 2005; 29: 896-901
        • Tapert S.F.
        • Brown G.G.
        • Kindermann S.S.
        • Cheung E.H.
        • Frank L.R.
        • Brown S.A.
        fMRI measurement of brain dysfunction in alcohol-dependent young women.
        Alcohol Clin Exp Res. 2001; 25: 236-245
        • Fischl B.
        • Salat D.H.
        • Busa E.
        • Albert M.
        • Dieterich M.
        • Haselgrove C.
        • et al.
        Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain.
        Neuron. 2002; 33: 341-355
        • Fischl B.
        • van der Kouwe A.
        • Destrieux C.
        • Halgren E.
        • Segonne F.
        • Salat D.H.
        • et al.
        Automatically parcellating the human cerebral cortex.
        Cereb Cortex. 2004; 14: 11-22
        • Barros-Loscertales A.
        • Meseguer V.
        • Sanjuan A.
        • Belloch V.
        • Parcet M.A.
        • Torrubia R.
        • Avila C.
        Striatum gray matter reduction in males with an overactive behavioral activation system.
        Eur J Neurosci. 2006; 24: 2071-2074
        • Devlin J.T.
        • Poldrack R.A.
        In praise of tedious anatomy.
        Neuroimage. 2007; 37 (discussion 1050–1038): 1033-1041