Advertisement

Impulsivity, Compulsivity, and Habit: The Role of Orbitofrontal Cortex Revisited

  • Mary M. Torregrossa
    Affiliations
    Department of Psychiatry, Yale University School of Medicine, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut.
    Search for articles by this author
  • Jennifer J. Quinn
    Affiliations
    Department of Psychiatry, Yale University School of Medicine, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut.
    Search for articles by this author
  • Jane R. Taylor
    Correspondence
    Address reprint requests to Jane R. Taylor, Ph.D., Division of Molecular Psychiatry, S307 CMHC, New Haven, CT 06508
    Affiliations
    Department of Psychiatry, Yale University School of Medicine, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut.
    Search for articles by this author
      Humans suffering damage to the orbitofrontal cortex (OFC) are often described as impulsive. The most famous example is Phineas Gage, a railway worker who in 1848 suffered extreme frontal lobe damage when a long iron rod was projected through his skull after an accidental explosion. Gage survived but was reported to have an extreme change in personality, including increased inappropriate behavior (impulsiveness) (
      • Haas L.F.
      Phineas Gage and the science of brain localization.
      ,
      • Murray E.A.
      • O’Doherty J.P.
      • Schoenbaum G.
      What we know and do not know about the functions of the orbitofrontal cortex after 20 years of cross-species studies.
      ). People with OFC lesions are more impulsive compared with both normal control subjects and people with non-OFC frontal cortex damage, as measured by self-report and by cognitive/behavioral tasks (
      • Berlin H.A.
      • Rolls E.T.
      • Kischka U.
      Impulsivity, time perception, emotion and reinforcement sensitivity in patients with orbitofrontal cortex lesions.
      ). But how is impulsivity defined? And how can it be measured?
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Haas L.F.
        Phineas Gage and the science of brain localization.
        J Neurol Neurosurg Psychiatry. 2001; 71: 761
        • Murray E.A.
        • O’Doherty J.P.
        • Schoenbaum G.
        What we know and do not know about the functions of the orbitofrontal cortex after 20 years of cross-species studies.
        J Neurosci. 2007; 27: 8166-8169
        • Berlin H.A.
        • Rolls E.T.
        • Kischka U.
        Impulsivity, time perception, emotion and reinforcement sensitivity in patients with orbitofrontal cortex lesions.
        Brain. 2004; 127: 1108-1126
        • Chamberlain S.R.
        • Sahakian B.J.
        The neuropsychiatry of impulsivity.
        Curr Opin Psychiatry. 2007; 20: 255-261
        • Jentsch J.D.
        • Taylor J.R.
        Impulsivity resulting from frontostriatal dysfunction in drug abuse: Implications for the control of behavior by reward-related stimuli.
        Psychopharmacol. 1999; 146: 373-390
        • Roberts A.C.
        • Wallis J.D.
        Inhibitory control and affective processing in the prefrontal cortex: Neuropsychological studies in the common marmoset.
        Cereb Cortex. 2000; 10: 252-262
        • Hildebrandt H.
        • Brokate B.
        • Hoffmann E.
        • Kroger B.
        • Eling P.
        Conditional responding is impaired in chronic alcoholics.
        J Clin Exp Neuropsychol. 2006; 28: 631-645
        • Bechara A.
        Risky business: Emotion, decision-making, and addiction.
        J Gambl Stud. 2003; 19: 23-51
        • Schoenbaum G.
        • Roesch M.R.
        • Stalnaker T.A.
        Orbitofrontal cortex, decision-making and drug addiction.
        Trends Neurosci. 2006; 29: 116-124
        • Rogers R.D.
        • Everitt B.J.
        • Baldacchino A.
        • Blackshaw A.J.
        • Swainson R.
        • Wynne K.
        • et al.
        Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: Evidence for monoaminergic mechanisms.
        Neuropsychopharmacol. 1999; 20: 322-339
        • Sheppard D.M.
        • Bradshaw J.L.
        • Purcell R.
        • Pantelis C.
        Tourette’s and comorbid syndromes: Obsessive compulsive and attention deficit hyperactivity disorder.
        Clin Psychol Rev. 1999; 19: 531-552
        • Robbins T.W.
        • Everitt B.J.
        Drug addiction: bad habits add up.
        Nature. 1999; 398: 567-570
        • Everitt B.J.
        • Robbins T.W.
        Neural systems of reinforcement for drug addiction: From actions to habits to compulsion.
        Nat Neurosci. 2005; 8: 1481-1489
        • Gerdeman G.L.
        • Partridge J.G.
        • Lupica C.R.
        • Lovinger D.M.
        It could be habit forming: Drugs of abuse and striatal synaptic plasticity.
        Trends Neurosci. 2003; 26: 184-192
        • Vanderschuren L.J.
        • Di Ciano P.
        • Everitt B.J.
        Involvement of the dorsal striatum in cue-controlled cocaine seeking.
        J Neurosci. 2005; 25: 8665-8670
        • Volkow N.D.
        • Wang G.J.
        • Telang F.
        • Fowler J.S.
        • Logan J.
        • Childress A.R.
        • et al.
        Cocaine cues and dopamine in dorsal striatum: Mechanism of craving in cocaine addiction.
        J Neurosci. 2006; 26: 6583-6588
        • Yin H.H.
        • Knowlton B.J.
        • Balleine B.W.
        Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning.
        Eur J Neurosci. 2004; 19: 181-189
        • Yin H.H.
        • Knowlton B.J.
        • Balleine B.W.
        Blockade of NMDA receptors in the dorsomedial striatum prevents action-outcome learning in instrumental conditioning.
        Eur J Neurosci. 2005; 22: 505-512
        • Yin H.H.
        • Knowlton B.J.
        • Balleine B.W.
        Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning.
        Behav Brain Res. 2006; 166: 189-196
        • Yin H.H.
        • Ostlund S.B.
        • Knowlton B.J.
        • Balleine B.W.
        The role of the dorsomedial striatum in instrumental conditioning.
        Eur J Neurosci. 2005; 22: 513-523
        • Colwill R.M.
        • Rescorla R.A.
        Effect of reinforcer devaluation on discriminative control of instrumental behavior.
        J Exp Psychol Anim Behav Process. 1990; 16: 40-47
        • Dickinson A.
        Actions and habits: The development of behavioural autonomy.
        Philos Trans R Soc Lond Ser B Biol Sci. 1985; 308: 67-78
        • Balleine B.W.
        • Dickinson A.
        Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates.
        Neuropharmacology. 1998; 37: 407-419
        • Yin H.H.
        • Knowlton B.J.
        The role of the basal ganglia in habit formation.
        Nat Rev Neurosci. 2006; 7: 464-476
        • Holland P.C.
        • Gallagher M.
        Amygdala-frontal interactions and reward expectancy.
        Curr Opin Neurobiol. 2004; 14: 148-155
        • Bechara A.
        • Damasio A.R.
        • Damasio H.
        • Anderson S.W.
        Insensitivity to future consequences following damage to human prefrontal cortex.
        Cognition. 1994; 50: 7-15
        • Pickens C.L.
        • Saddoris M.P.
        • Setlow B.
        • Gallagher M.
        • Holland P.C.
        • Schoenbaum G.
        Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task.
        J Neurosci. 2003; 23: 11078-11084
        • Pickens C.L.
        • Saddoris M.P.
        • Gallagher M.
        • Holland P.C.
        Orbitofrontal lesions impair use of cue-outcome associations in a devaluation task.
        Behav Neurosci. 2005; 119: 317-322
        • Ostlund S.B.
        • Balleine B.W.
        Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning.
        J Neurosci. 2007; 27: 4819-4825
        • Valentin V.V.
        • Dickinson A.
        • O’Doherty J.P.
        Determining the neural substrates of goal-directed learning in the human brain.
        J Neurosci. 2007; 27: 4019-4046
        • Gottfried J.A.
        • O’Doherty J.
        • Dolan R.J.
        Encoding predictive reward value in human amygdala and orbitofrontal cortex.
        Science. 2003; 301: 1104-1107
        • Reynolds B.
        A review of delay-discounting research with humans: Relations to drug use and gambling.
        Behav Pharmacology. 2006; 17: 651-667
        • Winstanley C.A.
        • Eagle D.M.
        • Robbins T.W.
        Behavioral models of impulsivity in relation to ADHD: Translation between clinical and preclinical studies.
        Clin Psychol Rev. 2006; 26: 379-395
        • Simon N.W.
        • Mendex I.A.
        • Setlow B.
        Cocaine exposure causes long-term increases in impulsive choice.
        Behav Neurosci. 2007; 121: 543-549
        • Winstanley C.A.
        • Theobald D.E.
        • Cardinal R.N.
        • Robbins T.W.
        Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice.
        J Neurosci. 2004; 24: 4718-4722
        • Chudasama Y.
        • Passetti F.
        • Rhodes S.E.
        • Lopian D.
        • Desai A.
        • Robbins T.W.
        Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: Differential effects on selectivity, impulsivity, and compulsivity.
        Behav Brain Res. 2003; 146: 105-119
        • Eagle D.M.
        • Baunez C.
        • Hutcheson D.M.
        • Lehmann O.
        • Shah A.P.
        • Robbins T.W.
        Stop-signal reaction-time task performance: Role of prefrontal cortex and subthalamic nucleus.
        Cereb Cortex. 2007; 18: 178-188
        • Chudasama Y.
        • Robbins T.W.
        Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: Further evidence for the functional heterogeneity of the rodent frontal cortex.
        J Neurosci. 2003; 23: 8771-8780
        • Schoenbaum G.
        • Saddoris M.P.
        • Stalnaker T.A.
        Reconciling the roles of orbitofrontal cortex in reversal learning and the encoding of outcome expectancies.
        Ann NY Acad Sci. 2007; (doi: 10.1196/annals.1401.001.)
        • Evans D.W.
        • Lewis M.D.
        • Iobst E.
        The role of the orbitofrontal cortex in normally developing compulsive-like behaviors and obsessive-compulsive disorder.
        Brain Cogn. 2004; 55: 220-234
        • Grant J.E.
        • Potenza M.N.
        Compulsive aspects of impulse-control disorders.
        Psychiatry Clin North Am. 2006; 29: 539-551
        • Schoenbaum G.
        • Shaham Y.
        The role of orbitofrontal cortex in drug addiction: A review of preclinical studies.
        Biol Psychiatry. 2008; 63: 256-262
        • Everitt B.J.
        • Robbins T.W.
        Neural systems of reinforcement for drug addiction: From actions to habits to compulsion.
        Nat Neurosci. 2005; 8: 1481-1489
        • Diergaarde L.
        • Pattij T.
        • Poortvliet I.
        • Hogenboom F.
        • de Vries W.
        • Schoffelmeer A.N.M.
        • De Vries T.
        Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking in rats.
        Biol Psychiatry. 2008; 63: 301-308