Activation of Raphe Efferents to the Medial Prefrontal Cortex by Corticotropin-Releasing Factor: Correlation with Anxiety-Like Behavior

Published:December 03, 2007DOI:


      Parallel lines of research suggest that dysfunction affecting both corticotropin-releasing factor (CRF) and serotonin (5-HT) systems is involved in the pathophysiology of psychiatric illnesses such as anxiety and depression. The effect of CRF on behavior and on the accompanying change in activity of 5-HT neurons in the dorsal and median raphe nuclei (DR and MR) that project to the ventral medial prefrontal cortex (mPFC), a brain area implicated in mood and anxiety disorders, was studied.


      Male Sprague-Dawley rats with intra-mPFC deposits of fluorescent microspheres received injections of CRF (1 μg, intracerebroventricular [ICV]) and were tested for CRF-enhanced startle, a behavioral assay believed to reflect stress- or anxiety-like states. C-Fos immunohistochemistry was used to measure CRF-induced activity in retrogradely labeled neurons in the DR and MR and correlate this level of activity with the level of CRF-enhanced startle.


      The CRF-enhanced startle was accompanied by an increased c-Fos expression in retrogradely labeled cells in the raphe. In the DR and MR, there was a clear topography of activation, with a higher-percent activation in retrogradely labeled neurons in caudal sections. In the caudal DR, this effect was positively correlated with the level of CRF-enhanced startle. Co-expression of retrogradely labeled cells with tryptophan hydroxylase showed that the majority (> 90%) of raphe efferents to the mPFC were from serotonergic neurons.


      These data indicate that CRF activates a subpopulation of cortical-projecting 5-HT raphe neurons and suggest that increased 5-HT release in the mPFC might be an important component driving some types of anxiety-like behaviors.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Owens M.J.
        • Nemeroff C.B.
        The role of corticotropin-releasing factor in the pathophysiology of affective and anxiety disorders: Laboratory and clinical studies.
        Ciba Found Symp. 1993; 172: 296-308
        • Heim C.
        • Nemeroff C.B.
        The role of childhood trauma in the neurobiology of mood and anxiety disorders: Preclinical and clinical studies.
        Biol Psychiatry. 2001; 49: 1023-1039
        • Boyer P.
        Do anxiety and depression have a common pathophysiological mechanism?.
        Acta Psychiatr Scanf. 2000; 102: 24-29
        • Bakshi V.P.
        • Kalin N.H.
        Corticotropin-releasing hormone and animal models of anxiety: Gene-environment interactions.
        Biol Psychiatry. 2000; 48: 1175-1198
        • Steckler T.
        • Holsboer F.
        Corticotropin-releasing hormone receptor subtypes and emotion.
        Biol Psychiatry. 1999; 46: 1480-1508
        • Takahashi L.K.
        Role of CRF1 and CRF2 receptors in fear and anxiety.
        Neurosci Biobehav Rev. 2001; 25: 627-636
        • Weiss J.M.
        • Stout J.C.
        • Aaron M.F.
        • Quan N.
        • Owens M.J.
        • Butler P.D.
        • et al.
        Depression and anxiety: role of the locus coeruleus and corticotropin-releasing factor.
        Brain Res Bull. 1994; 35: 561-572
        • Koob G.F.
        Corticotropin-releasing factor, norepinephrine, and stress.
        Biol Psychiatry. 1999; 46: 1167-1180
        • Ströhle A.
        • Holsboer F.
        Stress responsive neurohormones in depression and anxiety.
        Pharmacopsychiatry. 2003; 36: S207-S214
        • Mitchell A.J.
        The role of corticotropin releasing factor in depressive illness: a critical review.
        Neurosci Biobehav Rev. 1998; 22: 635-651
        • Arborelius L.
        • Owens M.J.
        • Plotsky P.M.
        • Nemeroff C.B.
        The role of corticotropin-releasing factor in depression and anxiety disorders.
        J Endocrinol. 1999; 160: 1-12
        • Ressler K.J.
        • Nemeroff C.B.
        Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders.
        Depress Anxiety. 2000; 12: 2-19
        • Lowry C.A.
        • Moore F.L.
        Regulation of behavioral responses by corticotropin-releasing factor.
        Gen Comp Endocrinol. 2006; 146: 19-27
        • Linthorst A.C.
        Interactions between corticotropin-releasing hormone and serotonin: Implications for the aetiology and treatment of anxiety disorders.
        Handb Exp Pharmacol. 2005; 169: 181-204
        • Ruggiero D.A.
        • Underwood M.D.
        • Rice P.M.
        • Mann J.J.
        • Arango V.
        Corticotropin-releasing hormone and serotonin interact in the human brainstem: Behavioral implications.
        Neuroscience. 1999; 4: 1343-1354
        • Austin M.C.
        • Janosky J.E.
        • Murphy H.A.
        Increased corticotropin-releasing hormone immunoreactivity in monoamine-containing pontine nuclei of depressed suicide men.
        Mol Psychiatry. 2003; 8: 324-332
        • Lowry C.A.
        • Rodda J.E.
        • Lightman S.L.
        • Ingram C.D.
        Corticotropin-releasing factor increases in vitro firing rates of serotonergic neurons in the rat dorsal raphe nucleus: Evidence for activation of a topographically organized mesolimbic serotonergic system.
        J Neurosci. 2000; 20: 7728-7736
        • Pernar L.
        • Curtis A.L.
        • Vale W.W.
        • Rivier J.E.
        • Valentino R.J.
        Selective activation of corticotropin-releasing factor-2 receptors on neurochemically identified neurons in the rat dorsal raphe nucleus reveals dual action.
        J Neurosci. 2004; 24: 1305-1311
        • Kirby L.G.
        • Rice K.C.
        • Valentino R.J.
        Effects of corticotropin-releasing factor on neuronal activity in the serotonergic dorsal raphe nucleus.
        Neuropsychopharmacology. 2000; 22: 148-162
        • de Groote L.
        • Penalva R.G.
        • Flachskamm C.
        • Reul J.M.H.M.
        • Linthorst A.C.E.
        Differential monoaminergic, neuroendocrine and behavioural responses after central administration of corticotropin-releasing factor receptor type 1 and type 2 agonists.
        J Neurochem. 2005; 94: 45-56
        • Kagamiishi Y.
        • Yamamoto T.
        • Watanabe S.
        Hippocampal serotonergic system is involved in anxiety-like behavior induced by corticotropin-releasing factor.
        Brain Res. 2003; 991: 212-221
        • Price M.L.
        • Lucki I.
        Regulation of serotonin release in the lateral septum and striatum by corticotropin-releasing factor.
        J Neurosci. 2001; 21: 2833-2841
        • Dunn A.J.
        • Berridge C.W.
        Corticotropin-releasing factor administration elicits a stress-like activation of cerebral catecholaminergic systems.
        Pharmacol Biochem Behav. 1987; 27: 685-691
        • Drevets W.C.
        • Price J.L.
        • Simpson J.R.
        • Todd R.D.
        • Reich T.
        • Vannier M.
        • et al.
        Subgenual prefrontal cortex abnormalities in mood disorders.
        Nature. 1997; 386: 824-827
        • Shin L.M.
        • Rauch S.L.
        • Pitman R.K.
        Amygdala, medial prefrontal cortex, and hippocampal function in PTSD.
        Ann N Y Acad Sci. 2006; 1071: 67-79
        • Vertes R.P.
        a PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat.
        J Comp Neurol. 1991; 313: 643-668
        • Forster G.L.
        • Feng N.
        • Watt M.J.
        • Korzan W.J.
        • Mouw N.J.
        • Summers C.H.
        • et al.
        Corticotropin-releasing factor in the dorsal raphe elicits temporally distinct serotonergic responses in the limbic system in relation to fear behavior.
        Neuroscience. 2006; 141: 1047-1055
        • Lavicky J.
        • Dunn A.J.
        Corticotropin-releasing factor stimulates catecholamine release in hypothalamus and prefrontal cortex in freely moving rats as assessed by microdialysis.
        J Neurochem. 1993; 60: 602-612
        • Lee Y.
        • Davis M.
        Role of the hippocampus, bed nucleus of the stria terminalis and amygdala in the excitatory effect of corticotropin releasing hormone (CRH) on the acoustic startle reflex.
        J Neurosci. 1997; 17: 6434-6446
        • Meloni E.G.
        • Gerety L.P.
        • Knoll A.T.
        • Cohen B.M.
        • Carlezon W.A.
        Behavioral and anatomical interactions between dopamine and corticotropin-releasing factor in the rat.
        J Neurosci. 2006; 26: 3855-3863
        • Hoffman G.E.
        • Smith M.S.
        • Verbalis J.G.
        c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems.
        Front Neuroendocrinol. 1993; 14: 173-213
        • Hoffman G.E.
        • Lyo D.
        Anatomical markers of activity in neuroendocrine systems: Are we all ‘Fos-ed out’?.
        J Neuroendocrinol. 2002; 14: 259-268
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotaxic Coordinates.
        3rd ed. Academic Press, New York1997
        • Abrams J.K.
        • Johnson P.L.
        • Hollis J.H.
        • Lowry C.A.
        Anatomic and functional topography of the dorsal raphe nucleus.
        Ann N Y Acad Sci. 2004; 1018: 46-57
        • Kovacs K.J.
        c-Fos as a transcription factor: A stressful (re)view from a functional map.
        Neurochem Int. 1998; 33: 287-297
        • Mikkelsen J.D.
        • Hay-Schmidt A.
        • Larsen P.J.
        Central innervation of the rat ependyma and subcommissural organ with special reference to ascending serotoninergic projections from the raphe nuclei.
        J Comp Neurol. 1997; 384: 556-568
        • Simpson K.L.
        • Fisher T.M.
        • Waterhouse B.D.
        • Lin R.C.S.
        Projection patterns from the raphe nuclear complex to the ependymal wall of the ventricular system in the rat.
        J Comp Neurol. 1998; 399: 61-72
        • Lowry C.A.
        • Johnson P.L.
        • Hay-Schmidt A.
        • Mikkelsen J.
        • Shekhar A.
        Modulation of anxiety circuits by serotonergic systems.
        Stress. 2005; 8: 233-246
        • Valentino R.J.
        • Liouterman L.
        • Van Bockstaele E.J.
        Evidence for regional heterogeneity in corticotropin-releasing factor interactions in the dorsal raphe.
        J Comp Neurol. 2001; 435: 450-463
        • Waselus M.
        • Valentino R.J.
        • Van Bockstaele E.J.
        Ultrastructural evidence for a role of γ-aminobutyric acid in mediating the effects of corticotropin-releasing factor on the rat dorsal raphe serotonin system.
        J Comp Neurol. 2005; 482: 155-165
        • DeSouza E.B.
        • Insel T.R.
        • Perrin M.H.
        • Rivier J.
        • Vale W.W.
        • Kuhar M.J.
        Corticotropin-releasing factor receptors are widely distributed within the rat central nervous system: An autoradiographic study.
        J Neurosci. 1985; 5: 3189-3203
        • Day H.E.W.
        • Greenwood B.N.
        • Hammack S.E.
        • Watkins L.R.
        • Fleshner M.
        • Maier S.F.
        • et al.
        Differential expression of 5-HT-1A, a1b adrenergic, CRF-R1, and CRF-R2 receptor mRNA in serotonergic, γ-aminobutyric acidergic, and catecholaminergic cells of the rat dorsal raphe nucleus.
        J Comp Neurol. 2004; 474: 364-378
        • Van Pett K.
        • Viau V.
        • Bittencourt J.C.
        • Chan R.K.W.
        • Li H.-Y.
        • Arias C.
        • et al.
        Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse.
        J Comp Neurol. 2000; 428: 191-212
        • Reyes T.M.
        • Lewis M.H.
        • Perrin M.H.
        • Kunitake K.S.
        • Vaughan J.
        • Arias C.A.
        • et al.
        Urocortin II: A member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors.
        Proc Natl Acad Sci U S A. 2001; 98: 2843-2848
        • Lewis K.
        • Li C.
        • Perrin M.H.
        • Blount A.
        • Kunitake K.
        • Donaldson C.
        • et al.
        Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor.
        Proc Natl Acad Sci U S A. 2001; 98: 7570-7575
        • Amat J.
        • Tamblyn J.P.
        • Paul E.D.
        • Bland S.T.
        • Amat P.
        • Foster A.C.
        • et al.
        Microinjections of urocortin 2 into the dorsal raphe nucleus activates serotonergic neurons and increases extracellular serotonin in the basolateral amygdala.
        Neuroscience. 2004; 129: 509-519
        • Staub D.R.
        • Evans A.K.
        • Lowry C.A.
        Evidence supporting a role for corticotropin-releasing factor type 2 (CRF2) receptors in the regulation of subpopulations of serotonergic neurons.
        Brain Res. 2006; 1070: 77-89
        • Risbrough V.B.
        • Hauger R.L.
        • Pelleymounter M.A.
        • Geyer M.A.
        Role of corticotropin releasing factor (CRF) receptors 1 and 2 in CRF-potentiated acoustic startle in mice.
        Psychopharmacology. 2003; 170: 178-187
        • Liang K.C.
        • Melia K.R.
        • Miserendino M.J.D.
        • Falls W.A.
        • Campeau S.
        • Davis M.
        Corticotropin-releasing factor: Long-lasting facilitation of the acoustic startle reflex.
        J Neurosci. 1992; 12: 2303-2312
        • Hajos M.
        • Gartside S.E.
        • Varga V.
        • Sharp T.
        In vivo inhibition of neuronal activity in the rat ventromedial prefrontal cortex by midbrain-raphe nuclei: Role of 5-HT1A receptors.
        Neuropharmacology. 2003; 45: 72-81
        • Puig M.V.
        • Artigas F.
        • Celada P.
        Modulation of the activity of pyramidal neurons in the rat prefrontal cortex by raphe stimulation in vivo: Involvement of serotonin and GABA.
        Cereb Cortex. 2005; 15: 1-14
        • Mantz J.
        • Godbout R.
        • Tassin J.-P.
        • Glowinski J.
        • Thierry A.-M.
        Inhibition of spontaneous and evoked unit activity in the rat medial prefrontal cortex by mesencephalic raphe nuclei.
        Brain Res. 1990; 524: 22-30
        • Zhou F.-M.
        • Hablitz J.J.
        Activation of serotonin receptors modulates synaptic transmission in rat cerebral cortex.
        J Neurophysiol. 1999; 82: 2989-2999
        • Tan H.
        • Zhong P.
        • Yan Z.
        Corticotropin-releasing factor and acute stress prolongs serotonergic regulation of GABA transmission in prefrontal cortical pyramidal neurons.
        J Neurosci. 2004; 24: 5000-5008
        • Ashby C.R.
        • Edwards E.
        • Wang R.Y.
        Action of serotonin in the medial prefrontal cortex: Mediation by serotonin2-like receptors.
        Synapse. 1992; 10: 7-15
        • Aghajanian G.K.
        • Marek G.J.
        Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells.
        Neuropharmacology. 1997; 36: 589-599
        • Yan Z.
        Regulation of GABAergic inhibition by serotonin signaling in prefrontal cortex.
        Mol Neurobiol. 2002; 26: 1-14
        • Puig M.V.
        • Santana N.
        • Celada P.
        • Mengod G.
        • Artigas F.
        In vivo excitation of GABA interneurons in the medial prefrontal cortex through 5-HT3 receptors.
        Cereb Cortex. 2004; 14: 1365-1375
        • Santana N.
        • Bortolozzi A.
        • Serrats J.
        • Mengod G.
        • Artigas F.
        Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex.
        Cereb Cortex. 2004; 14: 1100-1109
        • Amat J.
        • Baratta M.V.
        • Paul E.
        • Bland S.T.
        • Watkins L.R.
        • Maier S.F.
        Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus.
        Nat Neurosci. 2005; 8: 365-371
        • Deakin J.W.F.
        • Graeff F.G.
        5-HT and mechanisms of defence.
        J Psychopharmacol. 1991; 5: 305-315
        • Sierra-Mercado D.J.
        • Corcoran K.A.
        • Lebron-Milad K.
        • Quirk G.J.
        Inactivation of the ventromedial prefrontal cortex reduces expression of conditioned fear and impairs subsequent recall of extinction.
        Eur J Neurosci. 2006; 24: 1751-1758
        • Rauch S.L.
        • Shin L.M.
        • Whalen P.J.
        • Pitman R.K.
        Neuroimaging and the neuroanatomy of PTSD.
        CNS Spectrums. 1998; 3: 30-41
        • Kasckow J.W.
        • Baker D.
        • Geracioti Jr, T.D.
        Corticotropin-releasing hormone in depression and post-traumatic stress disorder.
        Peptides. 2001; 22: 845-851
        • Baker D.G.
        • West S.A.
        • Nicholson W.E.
        • Ekhator N.N.
        • Kasckow J.W.
        • Hill K.K.
        • et al.
        Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder.
        Am J Psychiatry. 1999; 156: 585-588
        • Vertes R.P.
        Differential projections of the infralimbic and prelimbic cortex in the rat.
        Synapse. 2004; 51: 32-58
        • Walker D.L.
        • Toufexis D.J.
        • Davis M.
        Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety.
        Eur J Neurosci. 2003; 463: 199-216
        • Meloni E.G.
        • Davis M.
        Synergistic enhancement of the acoustic startle reflex by dopamine D1 and 5-HT1A agonists and corresponding changes in c-Fos expression in the dorsal raphe of rats.
        Psychopharmacology. 2000; 151: 359-367