Advertisement

Antidepressant Treatment Can Normalize Adult Behavioral Deficits Induced by Early-Life Exposure to Methylphenidate

Published:September 21, 2007DOI:https://doi.org/10.1016/j.biopsych.2007.06.024

      Background

      Methylphenidate (MPH) is prescribed for the treatment of attention-deficit/hyperactivity disorder. Exposure to MPH before adulthood causes behavioral deficits later in life, including anxiety- and depression-like behaviors and decreased responding to natural and drug rewards. We examined the ability of fluoxetine (FLX), a selective serotonin reuptake blocker, to normalize these MPH-induced behavioral deficits.

      Methods

      Male rats received MPH (2.0 mg/kg) or saline (VEH) during preadolescence (postnatal day [PD] 20–35). When adults, rats were divided into groups receiving no treatment, acute or chronic FLX, and behavioral reactivity to several emotion-eliciting stimuli were assessed.

      Results

      The MPH-treated rats were significantly less responsive to natural (i.e., sucrose) and drug (i.e., morphine) rewards and more sensitive to stress- and anxiety-eliciting situations. These MPH-induced deficits were reversed by exposure to FLX.

      Conclusions

      These results indicate that exposure to MPH during preadolescence leads to behavioral alterations that endure into adulthood and that these behavioral deficits can be normalized by antidepressant treatment. These results highlight the need for further research to better understand the effects of stimulants on the developing nervous system and the potential enduring effects resulting from early-life drug exposure.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Findling R.L.
        • Dogin J.W.
        Psychopharmacology of ADHD: Children and adolescents.
        J Clin Psychiatry. 1998; 59: 42-49
        • Arnsten A.F.
        Stimulants: Therapeutic actions in ADHD.
        Neuropsychopharmacology. 2006; 31: 2376-2383
        • Miller K.J.
        • Castellanos F.X.
        Attention deficit/hyperactivity disorders.
        Pediatr Rev. 1998; 19: 373-384
        • Kirby K.
        • Rutman L.E.
        • Bernstein H.
        Attention-deficit/hyperactivity disorder: A therapeutic update.
        Curr Opin Pediatr. 2002; 14: 236-246
        • Zito J.M.
        • Safer D.J.
        • dosReis S.
        • Gardner J.F.
        • Boles M.
        • Lynch F.
        Trends in the prescribing of psychotropic medications to preschoolers.
        JAMA. 2000; 283: 1025-1030
        • Teicher M.H.
        • Ito Y.
        • Glod C.A.
        • Barber N.I.
        Objective measurement of hyperactivity and attentional problems in ADHD.
        J Am Acad Child Adolesc Psychiatry. 1996; 35: 334-342
        • Nass R.D.
        Evaluation and assessment issues in the diagnosis of attention deficit hyperactivity disorder.
        Semin Pediatr Neurol. 2005; 12: 200-216
        • Rey J.M.
        • Sawyer M.G.
        Are psychostimulant drugs being used appropriately to treat child and adolescent disorders?.
        Br J Psychiatry. 2003; 182: 284-286
        • Poulin C.
        Medical and nonmedical stimulant use among adolescents: From sanctioned to unsanctioned use.
        CMAJ. 2001; 165: 1039-1044
        • Jensen P.S.
        • Kettle L.
        • Roper M.T.
        • Sloan M.T.
        • Dulcan M.K.
        • Hoven C.
        • et al.
        Are stimulants overprescribed?.
        J Am Acad Child Adolesc Psychiatry. 1999; 38: 797-804
        • Silver L.B.
        Attention-deficit/hyperactivity disorder in adult life.
        Child Adolesc Psychiatr Clin N Am. 2000; 9: 511-523
        • Spencer T.
        • Biederman J.
        • Wilens T.
        • Harding M.
        • O’Donnell D.
        • Griffin S.
        Pharmacotherapy of attention-deficit hyperactivity disorder across the life cycle.
        J Am Acad Child Adolesc Psychiatry. 1996; 35: 409-432
        • Koob G.F.
        • Sanna P.P.
        • Bloom F.E.
        Neuroscience of addiction.
        Neuron. 1998; 21: 467-476
        • Wise R.A.
        • Bozarth M.A.
        A psychomotor stimulant theory of addiction.
        Psychol Rev. 1987; 94: 469-492
        • Schweri M.M.
        • Skolnick P.
        • Rafferty M.F.
        • Rice K.C.
        • Janowsky A.J.
        • Paul S.M.
        [3H]Threo-(+/−)–methylphenidate binding to 3,4-dihydroxyphenylethylamine uptake sites in corpus striatum: Correlation with the stimulant properties of ritalinic acid esters.
        J Neurochem. 1985; 45: 1062-1070
        • Kuczenski R.
        • Segal D.S.
        Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: Comparison with amphetamine.
        J Neurochem. 1997; 68: 2032-2037
        • Gerasimov M.R.
        • Franceschi M.
        • Volkow N.D.
        • Rice O.
        • Schiffer W.K.
        • Dewey S.L.
        Synergistic interactions between nicotine and cocaine or methylphenidate depend on the dose of dopamine transporter inhibitor.
        Synapse. 2000; 38: 432-437
        • Yang P.B.
        • Swann A.C.
        • Dafny N.
        Chronic methylphenidate modulates locomotor activity and sensory evoked responses in the VTA and NAc of freely behaving rats.
        Neuropharmacology. 2006; 51: 546-556
        • McDougall S.A.
        • Collins R.L.
        • Karper P.E.
        • Watson J.B.
        • Crawford C.A.
        Effects of repeated methylphenidate treatment in the young rat: Sensitization of both locomotor activity and stereotyped sniffing.
        Exp Clin Psychopharmacol. 1999; 7: 208-218
        • Carlezon Jr, W.A.
        • Nestler E.J.
        Elevated levels of GluR1 in the midbrain: A trigger for sensitization to drugs of abuse?.
        Trends Neurosci. 2002; 25: 610-615
        • Biederman J.
        • Wilens T.
        • Mick E.
        • Faraone S.V.
        • Weber W.
        • Curtis S.
        • et al.
        Is ADHD a risk factor for psychoactive substance use disorders?.
        J Am Acad Child Adolesc Psychiatry. 1997; 36: 21-29
        • Kollins S.H.
        • MacDonald E.K.
        • Rush C.R.
        Assessing the abuse potential of methylphenidate in nonhuman and human subjects: a review.
        Pharmacol Biochem Behav. 2001; 68: 611-627
        • Wilens T.E.
        • Faraone S.V.
        • Biederman J.
        • Gunawardene S.
        Does stimulant therapy of attention-deficit/hyperactivity disorder beget later substance abuse?.
        Pediatrics. 2003; 111: 179-185
        • Mannuzza S.
        • Klein R.G.
        • Moulton 3rd, J.L.
        Does stimulant treatment place children at risk for adult substance abuse?.
        J Child Adolesc Psychopharmacol. 2003; 13: 273-282
        • Andersen S.L.
        • Arvanitogiannis A.
        • Pliakas A.M.
        • LeBlanc C.
        • Carlezon Jr, W.A.
        Altered responsiveness to cocaine in rats exposed to methylphenidate during development.
        Nat Neurosci. 2002; 5: 13-14
        • Achat-Mendes C.
        • Anderson K.L.
        • Itzhak Y.
        Methylphenidate and MDMA adolescent exposure in mice: Long-lasting consequences on cocaine-induced reward and psychomotor stimulation in adulthood.
        Neuropharmacology. 2003; 45: 106-115
        • Carlezon Jr, W.A.
        • Mague S.D.
        • Andersen S.L.
        Enduring behavioral effects of early exposure to methylphenidate in rats.
        Biol Psychiatry. 2003; 54: 1330-1337
        • Bolaños C.A.
        • Barrot M.
        • Berton O.
        • Wallace-Black D.
        • Nestler E.J.
        Methylphenidate treatment during pre- and periadolescence alters behavioral responses to emotional stimuli at adulthood.
        Biol Psychiatry. 2003; 54: 1317-1329
        • Angold A.
        • Erkanli A.
        • Egger H.L.
        • Costello E.J.
        Stimulant treatment for children: A community perspective.
        J Am Acad Child Adolesc Psychiatry. 2000; 39 (discussion 984–994): 975-984
        • Andersen S.L.
        • Navalta C.P.
        Altering the course of neurodevelopment: A framework for understanding the enduring effects of psychotropic drugs.
        Int J Dev Neurosci. 2004; 22: 423-440
        • Gualtieri C.T.
        • Wargin W.
        • Kanoy R.
        • Patrick K.
        • Shen C.D.
        • Youngblood W.
        • et al.
        Clinical studies of methylphenidate serum levels in children and adults.
        J Am Acad Child Psychiatry. 1982; 21: 19-26
        • Kuczenski R.
        • Segal D.S.
        Stimulant actions in rodents: implications for attention-deficit/hyperactivity disorder treatment and potential substance abuse.
        Biol Psychiatry. 2005; 57: 1391-1396
        • Willner P.
        • Towell A.
        • Sampson D.
        • Sophokleous S.
        • Muscat R.
        Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant.
        Psychopharmacology (Berl). 1987; 93: 358-364
        • Hoffman D.C.
        The use of place conditioning in studying the neuropharmacology of drug reinforcement.
        Brain Res Bull. 1989; 23: 373-387
        • Carlezon Jr., W.A.
        Place conditioning to study drug reward and aversion.
        Methods Mol Med. 2003; 84: 243-249
        • Spruijt B.M.
        • Welbergen P.
        • Brakkee J.
        • Gispen W.H.
        An ethological analysis of excessive grooming in young and aged rats.
        Ann N Y Acad Sci. 1988; 525: 89-100
        • Cryan J.F.
        • Markou A.
        • Lucki I.
        Assessing antidepressant activity in rodents: Recent developments and future needs.
        Trends Pharmacol Sci. 2002; 23: 238-245
        • Lucki I.
        The forced swimming test as a model for core and component behavioral effects of antidepressant drugs.
        Behav Pharmacol. 1997; 8: 523-532
        • Mague S.D.
        • Andersen S.L.
        • Carlezon Jr, W.A.
        Early developmental exposure to methylphenidate reduces cocaine-induced potentiation of brain stimulation reward in rats.
        Biol Psychiatry. 2005; 57: 120-125
        • Robbins T.W.
        • Everitt B.J.
        Neurobehavioural mechanisms of reward and motivation.
        Curr Opin Neurobiol. 1996; 6: 228-236
        • Kelley A.E.
        • Berridge K.C.
        The neuroscience of natural rewards: relevance to addictive drugs.
        J Neurosci. 2002; 22: 3306-3311
        • Shimura T.
        • Kamada Y.
        • Yamamoto T.
        Ventral tegmental lesions reduce overconsumption of normally preferred taste fluid in rats.
        Behav Brain Res. 2002; 134: 123-130
        • Hajnal A.
        • Norgren R.
        Accumbens dopamine mechanisms in sucrose intake.
        Brain Res. 2001; 904: 76-84
        • Datla K.P.
        • Ahier R.G.
        • Young A.M.
        • Gray J.A.
        • Joseph M.H.
        Conditioned appetitive stimulus increases extracellular dopamine in the nucleus accumbens of the rat.
        Eur J Neurosci. 2002; 16: 1987-1993
        • Brandon C.L.
        • Marinelli M.
        • Baker L.K.
        • White F.J.
        Enhanced reactivity and vulnerability to cocaine following methylphenidate treatment in adolescent rats.
        Neuropsychopharmacology. 2001; 25: 651-661
        • Brandon C.L.
        • Marinelli M.
        • White F.J.
        Adolescent exposure to methylphenidate alters the activity of rat midbrain dopamine neurons.
        Biol Psychiatry. 2003; 54: 1338-1344
        • Crawford C.A.
        • Villafranca S.W.
        • Cyr M.C.
        • Farley C.M.
        • Reichel C.M.
        • Gheorghe S.L.
        • et al.
        Effects of early methylphenidate exposure on morphine- and sucrose-reinforced behaviors in adult rats: Relationship to dopamine D2 receptors.
        Brain Res. 2007; 1139: 245-253
        • Spear L.P.
        The adolescent brain and age-related behavioral manifestations.
        Neurosci Biobehav Rev. 2000; 24: 417-463
        • Zavala A.R.
        • Yoshida S.T.
        • Osburn J.R.
        • McDougall S.A.
        Paradoxical locomotor activating effects of kappa-opioid receptor stimulation in the preweanling rat: Role of the ventromedial thalamus and superior colliculus.
        Brain Res Dev Brain Res. 2002; 139: 301-306
        • Bolaños C.A.
        • Glatt S.J.
        • Jackson D.
        Subsensitivity to dopaminergic drugs in periadolescent rats: A behavioral and neurochemical analysis.
        Brain Res Dev Brain Res. 1998; 111: 25-33
        • Willner P.
        Validity, reliability and utility of the chronic mild stress model of depression: A 10-year review and evaluation.
        Psychopharmacology (Berl). 1997; 134: 319-329
        • Nestler E.J.
        • Carlezon Jr, W.A.
        The mesolimbic dopamine reward circuit in depression.
        Biol Psychiatry. 2006; 59: 1151-1159
        • Di Chiara G.
        • Loddo P.
        • Tanda G.
        Reciprocal changes in prefrontal and limbic dopamine responsiveness to aversive and rewarding stimuli after chronic mild stress: Implications for the psychobiology of depression.
        Biol Psychiatry. 1999; 46: 1624-1633
        • Berton O.
        • McClung C.A.
        • Dileone R.J.
        • Krishnan V.
        • Renthal W.
        • Russo S.J.
        • et al.
        Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress.
        Science. 2006; 311: 864-868
        • Sanchez C.
        • Gruca P.
        • Papp M.
        R-citalopram counteracts the antidepressant-like effect of escitalopram in a rat chronic mild stress model.
        Behav Pharmacol. 2003; 14: 465-470
        • Rygula R.
        • Abumaria N.
        • Domenici E.
        • Hiemke C.
        • Fuchs E.
        Effects of fluoxetine on behavioral deficits evoked by chronic social stress in rats.
        Behav Brain Res. 2006; 174: 188-192
        • de Montigny C.
        • Blier P.
        Effects of antidepressant treatments on 5-HT neurotransmission: electrophysiological and clinical studies.
        Adv Biochem Psychopharmacol. 1984; 39: 223-239
        • Nestler E.J.
        • Barrot M.
        • DiLeone R.J.
        • Eisch A.J.
        • Gold S.J.
        • Monteggia L.M.
        Neurobiology of depression.
        Neuron. 2002; 34: 13-25
        • To C.T.
        • Anheuer Z.E.
        • Bagdy G.
        Effects of acute and chronic fluoxetine treatment of CRH-induced anxiety.
        Neuroreport. 1999; 10: 553-555
        • Grippo A.J.
        • Beltz T.G.
        • Weiss R.M.
        • Johnson A.K.
        The effects of chronic fluoxetine treatment on chronic mild stress-induced cardiovascular changes and anhedonia.
        Biol Psychiatry. 2006; 59: 309-316
        • Cryan J.F.
        • Page M.E.
        • Lucki I.
        Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment.
        Psychopharmacology (Berl). 2005; 182: 335-344
        • Manji H.K.
        • Drevets W.C.
        • Charney D.S.
        The cellular neurobiology of depression.
        Nat Med. 2001; 7: 541-547
        • Sekine Y.
        • Suzuki K.
        • Ramachandran P.V.
        • Blackburn T.P.
        • Ashby Jr, C.R.
        Acute and repeated administration of fluoxetine, citalopram, and paroxetine significantly alters the activity of midbrain dopamine neurons in rats: An in vivo electrophysiological study.
        Synapse. 2007; 61: 72-77
        • Serra G.
        • Collu M.
        • D’Aquila P.S.
        • Gessa G.L.
        Role of the mesolimbic dopamine system in the mechanism of action of antidepressants.
        Pharmacol Toxicol. 1992; 71: 72-85
        • Bolaños C.A.
        • Trksak G.H.
        • Cohen O.S.
        • Jackson D.
        Differential serotonergic inhibition of in vitro striatal [3H]acetylcholine release in prenatally cocaine-exposed male and female rats.
        Prog Neuropsychopharmacol Biol Psychiatry. 2002; 26: 1339-1348
        • Bolaños C.A.
        • Trksak G.H.
        • Glatt S.J.
        • Jackson D.
        Prenatal cocaine exposure increases serotonergic inhibition of electrically evoked acetylcholine release from rat striatal slices at adulthood.
        Synapse. 2000; 36: 1-11
        • Deslandes P.N.
        • Pache D.M.
        • Buckland P.
        • Sewell R.D.
        Morphine, cocaine and antidepressant induced motivational activity and midbrain dopaminergic neurotransmission.
        Eur J Pharmacol. 2002; 453: 223-229
        • Nomikos G.G.
        • Damsma G.
        • Wenkstern D.
        • Fibiger H.C.
        Chronic desipramine enhances amphetamine-induced increases in interstitial concentrations of dopamine in the nucleus accumbens.
        Eur J Pharmacol. 1991; 195: 63-73
        • Laasonen-Balk T.
        • Kuikka J.
        • Viinamaki H.
        • Husso-Saastamoinen M.
        • Lehtonen J.
        • Tiihonen J.
        Striatal dopamine transporter density in major depression.
        Psychopharmacology (Berl). 1999; 144: 282-285
        • Gispen W.H.
        • Colbern D.L.
        • Spruijt B.M.
        Molecular transduction mechanisms in ACTH-induced grooming.
        Psychopharmacol Ser. 1988; 4: 215-231
        • Porsolt R.D.
        • Le Pichon M.
        • Jalfre M.
        Depression: A new animal model sensitive to antidepressant treatments.
        Nature. 1977; 266: 730-732
        • den Boer J.A.
        • Westenberg H.G.
        • Kamerbeek W.D.
        • Verhoeven W.M.
        • Kahn R.S.
        Effect of serotonin uptake inhibitors in anxiety disorders; a double-blind comparison of clomipramine and fluvoxamine.
        Int Clin Psychopharmacol. 1987; 2: 21-32
        • Papp L.A.
        • Sinha S.S.
        • Martinez J.M.
        • Coplan J.D.
        • Amchin J.
        • Gorman J.M.
        Low-dose venlafaxine treatment in panic disorder.
        Psychopharmacol Bull. 1998; 34: 207-209
        • Nutt D.J.
        • Glue P.
        • Lawson C.
        The neurochemistry of anxiety: An update.
        Prog Neuropsychopharmacol Biol Psychiatry. 1990; 14: 737-752
        • Bagdy G.
        • Graf M.
        • Anheuer Z.E.
        • Modos E.A.
        • Kantor S.
        Anxiety-like effects induced by acute fluoxetine, sertraline or m-CPP treatment are reversed by pretreatment with the 5-HT2C receptor antagonist SB-242084 but not the 5-HT1A receptor antagonist WAY-100635.
        Int J Neuropsychopharmacol. 2001; 4: 399-408
        • Belzung C.
        • Le Guisquet A.M.
        • Barreau S.
        • Calatayud F.
        An investigation of the mechanisms responsible for acute fluoxetine-induced anxiogenic-like effects in mice.
        Behav Pharmacol. 2001; 12: 151-162
        • Drapier D.
        • Bentue-Ferrer D.
        • Laviolle B.
        • Millet B.
        • Allain H.
        • Bourin M.
        • et al.
        Effects of acute fluoxetine, paroxetine and desipramine on rats tested on the elevated plus-maze.
        Behav Brain Res. 2007; 176: 202-209
        • Silva R.C.
        • Brandao M.L.
        Acute and chronic effects of gepirone and fluoxetine in rats tested in the elevated plus-maze: An ethological analysis.
        Pharmacol Biochem Behav. 2000; 65: 209-216
        • Carlezon Jr, W.A.
        • Konradi C.
        Understanding the neurobiological consequences of early exposure to psychotropic drugs: Linking behavior with molecules.
        Neuropharmacology. 2004; 47: 47-60
        • Lagace D.C.
        • Yee J.K.
        • Bolanos C.A.
        • Eisch A.J.
        Juvenile administration of methylphenidate attenuates adult hippocampal neurogenesis.
        Biol Psychiatry. 2006; 60: 1121-1130
        • Barrot M.
        • Olivier J.D.
        • Perrotti L.I.
        • DiLeone R.J.
        • Berton O.
        • Eisch A.J.
        • et al.
        CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli.
        Proc Natl Acad Sci U S A. 2002; 99: 11435-11440
        • Pliakas A.M.
        • Carlson R.R.
        • Neve R.L.
        • Konradi C.
        • Nestler E.J.
        • Carlezon Jr, W.A.
        Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens.
        J Neurosci. 2001; 21: 7397-7403