Advertisement

The Role of Orbitofrontal Cortex in Drug Addiction: A Review of Preclinical Studies

  • Geoffrey Schoenbaum
    Correspondence
    Address reprint requests to Geoffrey Schoenbaum, M.D., Ph.D., Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 685 West Baltimore Street, HSF-1 Room 280K, Baltimore, MD 21201l
    Affiliations
    Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, Maryland

    Department of Psychiatry, University of Maryland, School of Medicine, Baltimore, Maryland

    Department of Psychology, University of Maryland, Baltimore County, Baltimore, Maryland
    Search for articles by this author
  • Yavin Shaham
    Affiliations
    Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland.
    Search for articles by this author
      Studies using brain imaging methods have shown that neuronal activity in the orbitofrontal cortex, a brain area thought to promote the ability to control behavior according to likely outcomes or consequences, is altered in drug addicts. These human imaging findings have led to the hypothesis that core features of addiction like compulsive drug use and drug relapse are mediated in part by drug-induced changes in orbitofrontal function. Here, we discuss results from laboratory studies using rats and monkeys on the effect of drug exposure on orbitofrontal-mediated learning tasks and on neuronal structure and activity in orbitofrontal cortex. We also discuss results from studies on the role of the orbitofrontal cortex in drug self-administration and relapse. Our main conclusion is that although there is clear evidence that drug exposure impairs orbitofrontal-dependent learning tasks and alters neuronal activity in orbitofrontal cortex, the precise role these changes play in compulsive drug use and relapse has not yet been established.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Leshner A.I.
        Drug abuse and addiction treatment research.
        Arch Gen Psychiatry. 1997; 54: 691-694
        • Mendelson J.H.
        • Mello N.K.
        Management of cocaine abuse and dependence.
        N Engl J Med. 1996; 334: 965-972
        • O’Brien C.P.
        A range of research-based pharmacotherapies for addiction.
        Science. 1997; 278: 66-70
        • Wise R.A.
        Neurobiology of addiction.
        Curr Opin Neurobiol. 1996; 6: 243-251
        • Wise R.A.
        Catecholamine theories of reward: A critical review.
        Brain Res. 1978; 152: 215-247
        • Roberts D.C.
        • Koob G.F.
        • Klonoff P.
        • Fibiger H.C.
        Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens.
        Pharmacol Biochem Behav. 1980; 12: 781-787
        • Pierce R.C.
        • Kumaresan V.
        The mesolimbic dopamine system: The final common pathway for the reinforcing effect of drugs of abuse?.
        Neurosci Biobehav Rev. 2006; 30: 215-238
        • Shalev U.
        • Grimm J.W.
        • Shaham Y.
        Neurobiology of relapse to heroin and cocaine seeking: A review.
        Pharmacol Rev. 2002; 54: 1-42
        • Kalivas P.W.
        • Volkow N.D.
        The neural basis of addiction: A pathology of motivation and choice.
        Am J Psychiatry. 2005; 162: 1403-1413
        • Epstein D.H.
        • Preston K.L.
        • Stewart J.
        • Shaham Y.
        Toward a model of drug relapse: An assessment of the validity of the reinstatement procedure.
        Psychopharmacology. 2006; 189: 1-16
        • Robinson T.E.
        • Berridge K.C.
        Addiction.
        Annu Rev Psychol. 2003; 54: 25-53
        • Everitt B.J.
        • Wolf M.E.
        Psychomotor stimulant addiction: A neural systems perspective.
        J Neurosci. 2002; 22: 3312-3320
        • Wolffgramm J.
        • Galli G.
        • Thimm F.
        • Heyne A.
        Animal models of addiction: Models for therapeutic strategies?.
        J Neural Transm. 2000; 107: 649-668
        • Jentsch J.D.
        • Taylor J.R.
        Impulsivity resulting from frontostriatal dysfunction in drug abuse: Implications for the control of behavior by reward-related stimuli.
        Psychopharmacology. 1999; 146: 373-390
        • Volkow N.D.
        • Fowler J.S.
        Addiction, a disease of compulsion and drive: Involvement of the orbitofrontal cortex.
        Cereb Cortex. 2000; 10: 318-325
        • Schoenbaum G.
        • Roesch M.R.
        • Stalnaker T.A.
        Orbitofrontal cortex, decision-making and drug addiction.
        Trends Neurosci. 2006; 29: 116-124
        • London E.D.
        • Ernst M.
        • Grant S.
        • Bonson K.
        • Weinstein A.
        Orbitofrontal cortex and human drug abuse: Functional imaging.
        Cereb Cortex. 2000; 10: 334-342
        • Porrino L.J.
        • Lyons D.
        Orbital and medial prefrontal cortex and psychostimulant abuse: Studies in animal models.
        Cereb Cortex. 2000; 10: 326-333
        • Micallef J.
        • Blin O.
        Neurobiology and clinical pharmacology of obsessive–compulsive disorder.
        Clin Neuropharmacol. 2001; 24: 191-207
        • Saxena S.
        • Brody A.L.
        • Schwartz J.M.
        • Baxter L.R.
        Neuroimaging and frontal-subcortical circuitry in obsessive–compulsive disorder.
        Br J Psychiatry Suppl. 1998; : 26-37
        • Saxena S.
        • Brody A.L.
        • Maidment K.M.
        • Dunkin J.J.
        • Colgan M.
        • Alborzian S.
        • et al.
        Localized orbitofrontal and subcortical metabolic changes and predictors of response to paroxetine treatment in obsessive–compulsive disorder.
        Neuropsychopharmacology. 1999; 21: 683-693
        • Rauch S.L.
        • Jenike M.A.
        • Alpert N.M.
        • Baer L.
        • Breiter H.C.
        • Savage C.R.
        • Fischman A.J.
        Regional cerebral blood flow measured during symptom provocation in obsessive–compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography.
        Arch Gen Psychiatry. 1994; 51: 62-70
        • Friedman I.
        • Dar R.
        • Shilony E.
        Compulsivity and obsessionality in opioid addiction.
        J Nerv Ment Dis. 2000; 188: 155-162
        • Crum R.M.
        • Anthony J.C.
        Cocaine use and other suspected risk factors for obsessive–compulsive disorder: A prospective study with data from the Epidemiologic Catchment Area surveys.
        Drug Alcohol Depend. 1993; 31: 281-295
        • Fals-Stewart W.
        • Angarano K.
        Obsessive–compulsive disorder among patients entering substance abuse treatment.
        J Nerv Ment Dis. 1994; 182: 715-719
        • Volkow N.D.
        • Fowler J.S.
        • Wolf A.P.
        • Hitzemann R.
        • Dewey S.
        • Bendriem B.
        • et al.
        Changes in brain glucose metabolism in cocaine dependence and withdrawal.
        Am J Psychiatry. 1991; 148: 621-626
        • Stapleton J.M.
        • Morgan M.J.
        • Phillips R.L.
        • Wong D.F.
        • Yung B.C.
        • Shaya E.K.
        • et al.
        Cerebral glucose utilization in polysubstance abuse.
        Neuropsychopharmacology. 1995; 13: 21-31
        • Volkow N.D.
        • Chang L.
        • Wang G.J.
        • Fowler J.S.
        • Ding Y.S.
        • Sedler M.
        • et al.
        Low level of brain dopamine D2 receptors in methamphetamine abusers: Association with metabolism in the orbitofrontal cortex.
        Am J Psychiatry. 2001; 158: 2015-2021
        • London E.D.
        • Simon S.L.
        • Berman S.M.
        • Mandelkern M.A.
        • Lichtman A.M.
        • Bramen J.
        • et al.
        Mood disturbances and regional cerebral metabolic abnormalities in recently abstinent methamphetamine abusers.
        Arch Gen Psychiatry. 2004; 61: 73-84
        • Childress A.R.
        • Mozley P.D.
        • McElgin W.
        • Fitzgerald J.
        • Reivich M.
        • O’Brien C.P.
        Limbic activation during cue-induced cocaine craving.
        Am J Psychiatry. 1999; 156: 11-18
        • Bechara A.
        • Damasio H.
        • Damasio A.R.
        • Lee G.P.
        Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making.
        J Neurosci. 1999; 19: 5473-5481
        • Grant S.
        • Contoreggi C.
        • London E.D.
        Drug abusers show impaired performance in a laboratory test of decision making.
        Neuropsychologia. 2000; 38: 1180-1187
        • Bechara A.
        • Dolan S.
        • Denburg N.
        • Hindes A.
        • Andersen S.W.
        • Nathan P.E.
        Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers.
        Neuropsychologia. 2001; 39: 376-389
        • Rogers R.D.
        • Everitt B.J.
        • Baldacchino A.
        • Blackshaw A.J.
        • Swainson R.
        • Wynne K.
        • et al.
        Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: Evidence for monoaminergic mechanisms.
        Neuropsychopharmacology. 1999; 20: 322-339
        • Bolla K.I.
        • Eldreth D.A.
        • London E.D.
        • Keihl K.A.
        • Mouratidis M.
        • Contoreggi C.
        • et al.
        Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task.
        Neuroimage. 2003; 19: 1085-1094
        • Schoenbaum G.
        • Roesch M.R.
        Orbitofrontal cortex, associative learning, and expectancies.
        Neuron. 2005; 47: 633-636
        • Gallagher M.
        • McMahan R.W.
        • Schoenbaum G.
        Orbitofrontal cortex and representation of incentive value in associative learning.
        J Neurosci. 1999; 19: 6610-6614
        • Izquierdo A.D.
        • Suda R.K.
        • Murray E.A.
        Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency.
        J Neurosci. 2004; 24: 7540-7548
        • Baxter M.G.
        • Parker A.
        • Lindner C.C.C.
        • Izquierdo A.D.
        • Murray E.A.
        Control of response selection by reinforcer value requires interaction of amygdala and orbitofrontal cortex.
        J Neurosci. 2000; 20: 4311-4319
        • Cools R.
        • Clark L.
        • Owen A.M.
        • Robbins T.W.
        Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging.
        J Neurosci. 2002; 22: 4563-4567
        • Hampton A.N.
        • Bossaerts P.
        • O’Doherty J.P.
        The role of the ventromedial prefrontal cortex in abstract state-based inference during decision-making in humans.
        J Neurosci. 2006; 26: 8360-8367
        • Morris J.S.
        • Dolan R.J.
        Dissociable amygdala and orbitofrontal responses during reversal fear conditioning.
        Neuroimage. 2004; 22: 372-380
        • Chudasama Y.
        • Robbins T.W.
        Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: Further evidence for the functional heterogeneity of the rodent frontal cortex.
        J Neurosci. 2003; 23: 8771-8780
        • Brown V.J.
        • McAlonan K.
        Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat.
        Behav Brain Res. 2003; 146: 97-130
        • Kim J.
        • Ragozzino K.E.
        The involvement of the orbitofrontal cortex in learning under changing task contingencies.
        Neurobiol Learn Mem. 2005; 83: 125-133
        • Clark L.
        • Cools R.
        • Robbins T.W.
        The neuropsychology of ventral prefrontal cortex: Decision-making and reversal learning.
        Brain Cogn. 2004; 55: 41-53
        • Hornak J.
        • O’Doherty J.
        • Bramham J.
        • Rolls E.T.
        • Morris R.G.
        • Bullock P.R.
        • Polkey C.E.
        Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans.
        J Cogn Neurosci. 2004; 16: 463-478
        • Fellows L.K.
        • Farah M.J.
        Ventromedial frontal cortex mediates affective shifting in humans: Evidence from a reversal learning paradigm.
        Brain. 2003; 126: 1830-1837
        • Meunier M.
        • Bachevalier J.
        • Mishkin M.
        Effects of orbital frontal and anterior cingulate lesions on object and spatial memory in rhesus monkeys.
        Neuropsychologia. 1997; 35: 999-1015
        • Schoenbaum G.
        • Setlow B.
        • Nugent S.L.
        • Saddoris M.P.
        • Gallagher M.
        Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals.
        Learn Mem. 2003; 10: 129-140
        • Fellows L.K.
        • Farah M.J.
        Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans.
        Cereb Cortex. 2005; 15: 58-63
        • Holland P.C.
        • Straub J.J.
        Differential effects of two ways of devaluing the unconditioned stimulus after Pavlovian appetitive conditioning.
        J Exp Psychol Anim Behav Process. 1979; 5: 65-78
        • Pickens C.L.
        • Setlow B.
        • Saddoris M.P.
        • Gallagher M.
        • Holland P.C.
        • Schoenbaum G.
        Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task.
        J Neurosci. 2003; 23: 11078-11084
        • Gottfried J.A.
        • O’Doherty J.
        • Dolan R.J.
        Encoding predictive reward value in human amygdala and orbitofrontal cortex.
        Science. 2003; 301: 1104-1107
        • Wyvell C.L.
        • Berridge K.C.
        Incentive sensitization by previous amphetamine exposure: Increased cue-triggered “wanting” for sucrose reward.
        J Neurosci. 2001; 21: 7831-7840
        • Simon N.W.
        • Setlow B.
        Post-training amphetamine administration enhances memory consolidation in appetitive Pavlovian conditioning: Implication for drug addiction.
        Neurobiol Learn Mem. 2006; 86: 305-310
        • Schoenbaum G.
        • Setlow B.
        Cocaine makes actions insensitive to outcomes but not extinction: Implications for altered orbitofrontal–amygdalar function.
        Cereb Cortex. 2005; 15: 1162-1169
        • Nelson A.
        • Killcross S.
        Amphetamine exposure enhances habit formation.
        J Neurosci. 2006; 26: 3805-3812
        • Stalnaker T.A.
        • Roesch M.R.
        • Franz T.M.
        • Burke K.A.
        • Schoenbaum G.
        Abnormal associative encoding in orbitofrontal neurons in cocaine-experienced rats during decision-making.
        Eur J Neurosci. 2006; 24: 2643-2653
        • Homayoun H.
        • Moghaddam B.
        Progression of cellular adaptations in medial prefrontal and orbitofrontal cortex in response to repeated amphetamine.
        J Neurosci. 2006; 26: 8025-8039
        • Roesch M.R.
        • Takahashi Y.
        • Gugsa N.
        • Bissonette G.B.
        • Schoenbaum G.
        Previous cocaine exposure makes rats hypersensitive to both delay and reward magnitude.
        J Neurosci. 2007; 27: 245-250
        • Simon N.W.
        • Mendez I.A.
        • Setlow B.
        Cocaine exposure causes long-term increases in impulsive choice.
        Behav Neurosci. 2007; 121: 543-549
        • Mobini S.
        • Body S.
        • Ho M.-Y.
        • Bradshaw C.M.
        • Szabadi E.
        • Deakin J.F.W.
        • Anderson I.M.
        Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement.
        Psychopharmacology. 2002; 160: 290-298
        • Jentsch J.D.
        • Olausson P.
        • De La Garza R.
        • Taylor J.R.
        Impairments of reversal learning and response perseveration after repeated, intermittent cocaine administrations to monkeys.
        Neuropsychopharmacology. 2002; 26: 183-190
        • Schoenbaum G.
        • Saddoris M.P.
        • Ramus S.J.
        • Shaham Y.
        • Setlow B.
        Cocaine-experienced rats exhibit learning deficits in a task sensitive to orbitofrontal cortex lesions.
        Eur J Neurosci. 2004; 19: 1997-2002
        • Schoenbaum G.
        • Nugent S.
        • Saddoris M.P.
        • Setlow B.
        Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations.
        Neuroreport. 2002; 13: 885-890
        • Robinson T.E.
        • Berridge K.C.
        The psychology and neurobiology of addiction: An incentive-sensitization view.
        Addiction. 2000; 95: S91-S117
        • Crombag H.S.
        • Gorny G.
        • Li Y.
        • Kolb B.
        • Robinson T.E.
        Opposite effects of amphetamine self-administration experience on dendritic spines in the medial and orbital prefrontal cortex.
        Cereb Cortex. 2004; 15: 341-348
        • Robinson T.E.
        • Kolb B.
        Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by experience with amphetamine.
        J Neurosci. 1997; 17: 8491-8497
        • Robinson T.E.
        • Gorny G.
        • Mitton E.
        • Kolb B.
        Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex.
        Synapse. 2001; 39: 257-266
        • Robinson T.E.
        • Kolb B.
        Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine.
        Eur J Neurosci. 1999; 11: 1598-1604
        • Franklin T.R.
        • Acton P.D.
        • Maldjian J.A.
        • Gray J.D.
        • Croft J.R.
        • Dackis C.A.
        • et al.
        Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients.
        Biol Psychiatry. 2002; 51: 134-142
        • Kalivas P.W.
        • Stewart J.
        Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity.
        Brain Res Rev. 1991; 16: 223-244
        • Vanderschuren L.J.
        • Kalivas P.W.
        Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: A critical review of preclinical studies.
        Psychopharmacology. 2000; 151: 99-120
        • Dworkin S.I.
        • Mirkis S.
        • Smith J.E.
        Response-dependent versus response-independent presentation of cocaine: Differences in the lethal effects of the drug.
        Psychopharmacology. 1995; 117: 262-266
        • Hemby S.E.
        • Co C.
        • Koves T.R.
        • Smith J.E.
        • Dworkin S.I.
        Differences in extracellular dopamine concentrations in the nucleus accumbens during response-dependent and response-independent cocaine administration in the rat.
        Psychopharmacology. 1997; 133: 7-16
        • Kiyatkin E.A.
        • Brown P.L.
        Fluctuations in neural activity during cocaine self-administration: Clues provided by brain thermorecording.
        Neuroscience. 2003; 116: 525-538
        • Kalivas P.W.
        • Hu X.T.
        Exciting inhibition in psychostimulant addiction.
        Trend Neurosci. 2006; 29: 610-616
        • Bradberry C.W.
        Cocaine sensitization and dopamine mediation of cue effects in rodents, monkeys, and humans: Areas of agreement, disagreement, and implications for addiction.
        Psychopharmacology. 2007; 191: 705-717
        • Calu D.J.
        • Stalnaker T.A.
        • Franz T.M.
        • Singh T.
        • Shaham Y.
        • Schoenbaum G.
        Withdrawal from cocaine self-administration produces long-lasting deficits in orbitofrontal-dependent reversal learning in rats.
        Learn Mem. 2007; 14: 325-328
        • Kantak K.M.
        • Udo T.
        • Ugalde F.
        • Luzzo C.
        • Di Pietro N.
        • Eichenbaum H.B.
        Influence of cocaine self-administration on learning related to prefrontal cortex or hippocampus functioning in rats.
        Psychopharmacology. 2005; 181: 227-236
        • DiPietro N.
        • Black Y.D.
        • Green-Jordan K.
        • Eichenbaum H.B.
        • Kantak K.M.
        Complementary tasks to measure working memory in distinct prefrontal cortex subregions in rats.
        Behav Neurosci. 2004; 118: 1042-1051
        • Schuster C.R.
        • Thompson T.
        Self administration of and behavioral dependence on drugs.
        Annu Rev Pharmacol. 1969; 9: 483-502
        • Shaham Y.
        • Shalev U.
        • Lu L.
        • De Wit H.
        • Stewart J.
        The reinstatement model of drug relapse: History, methodology and major findings.
        Psychopharmacology. 2003; 168: 3-20
        • Phillips A.G.
        • Mora F.
        • Rolls E.T.
        Intracerebral self-administration of amphetamine by rhesus monkeys.
        Neurosci Lett. 1981; 24: 81-86
        • Ikemoto S.
        • Wise R.A.
        Mapping of chemical trigger zones for reward.
        Neuropharmacology. 2004; 47: 190-201
        • Hutcheson D.M.
        • Everitt B.J.
        The effects of selective orbitofrontal cortex lesions on the acquisition and performance of cue-controlled cocaine seeking in rats.
        Ann N Y Acad Sci. 2003; 1003: 410-411
        • Fuchs R.A.
        • Evans K.A.
        • Parker M.P.
        • See R.E.
        Differential involvement of orbitofrontal cortex subregions in conditioned cue-induced and cocaine-primed reinstatement of cocaine seeking in rats.
        J Neurosci. 2004; 24: 6600-6610
        • Ongur D.
        • Price J.L.
        The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans.
        Cereb Cortex. 2000; 10: 206-219
        • Ostlund S.B.
        • Balleine B.W.
        Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental learning.
        J Neurosci. 2007; 27: 4819-4825
        • Schindler C.W.
        • Panlilio L.V.
        • Goldberg S.R.
        Second-order schedules of drug self-administration in animals.
        Psychopharmacology. 2002; 163: 327-344
        • Everitt B.J.
        • Robbins T.W.
        Second-order schedules of drug reinforcement in rats and monkeys: Measurement of reinforcing efficacy and drug-seeking behaviour.
        Psychopharmacology. 2000; 153: 17-30
        • Thomas K.L.
        • Arroyo M.
        • Everitt B.J.
        Induction of the learning and plasticity-associated gene Zif268 following exposure to a discrete cocaine-associated stimulus.
        Eur J Neurosci. 2003; 17: 1964-1972
        • Pears A.
        • Parkinson J.A.
        • Hopewell L.
        • Everitt B.J.
        • Roberts A.C.
        Lesions of the orbitofrontal but not medial prefrontal cortex disrupt conditioned reinforcement in primates.
        J Neurosci. 2003; 23: 11189-11201
      1. Burke KA, Miller DN, Franz TM, Schoenbaum G (in press): Orbitofrontal lesions abolish conditioned reinforcement mediated by a representation of the expected outcome. Ann N Y Acad Sci.

        • Cousens G.A.
        • Otto T.
        Neural substrates of olfactory discrimination learning with auditory secondary reinforcement.
        Integr Physiol Behav Sci. 2003; 38: 272-294
        • See R.E.
        Neural substrates of conditioned-cue relapse to drug-seeking behavior.
        Pharmacol Biochem Behav. 2002; 71: 517-529
        • de Wit H.
        • Stewart J.
        Reinstatement of cocaine-reinforced responding in the rat.
        Psychopharmacology. 1981; 75: 134-143
        • Shaham Y.
        • Rajabi H.
        • Stewart J.
        Relapse to heroin-seeking under opioid maintenance: The effects of opioid withdrawal, heroin priming and stress.
        J Neurosci. 1996; 16: 1957-1963
        • Shaham Y.
        • Erb S.
        • Stewart J.
        Stress-induced relapse to heroin and cocaine seeking in rats: A review.
        Brain Res Brain Res Rev. 2000; 33: 13-33
        • Capriles N.
        • Rodaros D.
        • Sorge R.E.
        • Stewart J.
        A role for the prefrontal cortex in stress- and cocaine-induced reinstatement of cocaine seeking in rats.
        Psychopharmacology. 2003; 168: 66-74
        • Grimm J.W.
        • Hope B.T.
        • Wise R.A.
        • Shaham Y.
        Incubation of cocaine craving after withdrawal.
        Nature. 2001; 412: 141-142
        • Lu L.
        • Grimm J.W.
        • Hope B.T.
        • Shaham Y.
        Incubation of cocaine craving after withdrawal: A review of preclinical data.
        Neuropharmacology. 2004; 47: 214-226
        • Neisewander J.L.
        • Baker D.A.
        • Fuchs R.A.
        • Tran-Nguyen L.T.
        • Palmer A.
        • Marshall J.F.
        Fos protein expression and cocaine-seeking behavior in rats after exposure to a cocaine self-administration environment.
        J Neurosci. 2000; 20: 798-805
        • Shelton K.L.
        • Beardsley P.M.
        Interaction of extinguished cocaine-conditioned stimuli and footshock on reinstatement in rats.
        Int J Comp Psychol. 2005; 18: 154-166
        • Rudebeck P.H.
        • Walton M.E.
        • Smyth A.N.
        • Bannerman D.M.
        • Rushworth M.F.
        Separate neural pathways process different decision costs.
        Nat Neurosci. 2006; 9: 1161-1168
        • Winstanley C.A.
        • Theobald D.E.H.
        • Cardinal R.N.
        • Robbins T.W.
        Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice.
        J Neurosci. 2004; 24: 4718-4722
        • Roesch M.R.
        • Taylor A.R.
        • Schoenbaum G.
        Encoding of time-discounted rewards in orbitofrontal cortex is independent of value representation.
        Neuron. 2006; 51: 509-520
        • Katz J.L.
        • Higgins S.T.
        The validity of the reinstatement model of craving and relapse to drug use.
        Psychopharmacology. 2003; 168: 21-30
        • Epstein D.H.
        • Preston K.L.
        The reinstatement model and relapse prevention: A clinical perspective.
        Psychopharmacology. 2003; 168: 31-41
        • Epstein D.E.
        • Preston K.L.
        • Stewart J.
        • Shaham Y.
        Toward a model of drug relapse: An assessment of the validity of the reinstatement procedure.
        Psychopharmacology. 2006; 189: 1-16
        • Smith S.G.
        • Davis W.M.
        Punishment of amphetamine and morphine self-administration behavior.
        Psychol Rec. 1974; 24: 477-480
        • Johanson C.E.
        The effects of electric shock on responding maintained by cocaine injections in a choice procedure in the rhesus monkey.
        Psychopharmacology. 1977; 53: 277-282
        • Deroche-Gamonet V.
        • Belin D.
        • Piazza P.V.
        Evidence for addiction-like behavior in the rat.
        Science. 2004; 305: 1014-1017
        • Vanderschuren L.J.
        • Everitt B.J.
        Drug seeking becomes compulsive after prolonged cocaine self-administration.
        Science. 2004; 305: 1017-1019
        • Wolffgramm J.
        • Heyne A.
        From controlled drug intake to loss of control: The irreversible development of drug addiction in the rat.
        Behav Brain Res. 1995; 70: 77-94
        • Panlilio L.V.
        • Thorndike E.B.
        • Schindler C.W.
        Reinstatement of punishment-suppressed opioid self-administration in rats: An alternative model of relapse to drug abuse.
        Psychopharmacology. 2003; 168: 229-235
        • Cooper A.
        • Barnea-Ygael N.
        • Levy D.
        • Shaham Y.
        • Zangen A.
        A conflict rat model of cue-induced relapse to cocaine seeking.
        Psychopharmacology. 2007; (Epub ahead of print.)