Advertisement
Original Article| Volume 63, ISSUE 1, P17-23, January 01, 2008

Evidence of Missense Mutations on the Neuregulin 1 Gene Affecting Function of Prepulse Inhibition

      Background

      Neuregulin 1 (NRG1) is one of the leading candidate genes in schizophrenia. Rodents with NRG1 knock-out showed significantly impaired prepulse inhibition (PPI) in the original report linking NRG1 to schizophrenia. A widely used surrogate measure of psychosis in animal models, PPI is considered a schizophrenia endophenotype. We hypothesized that if NRG1 influences PPI in rodents, then it should have a similar effect on PPI in humans.

      Methods

      We examined the potential neurophysiological effects of two nonsynonymous single nucleotide polymorphisms located on NRG1 (rs3924999 and rs10503929) on PPI. Genotyping was completed in 430 unrelated individuals, including 244 schizophrenia cases and 186 controls. PPI was available in a subgroup of 113 cases and 63 controls.

      Results

      Rs3924999 genotype was significantly associated with PPI (p = .003): PPI was lowest in the subjects who were homozygous for the minor allele A/A carriers, intermediate in A/G carriers, and highest in homozygous major alleles G/G carriers. The associations persisted within cases (p = .02) and controls (p = .02) analyzed separately. An additive model suggested that rs3924999 alone contributes to 7.9% of the PPI variance. In contrast, rs10503929 genotype was not associated with PPI (p = .85). Schizophrenia patients had reduced PPI compared to control subjects (p = .04). Neither single nucleotide polymorphism was associated with schizophrenia (all p > .37). However, schizophrenia patients with abnormal PPI may be associated with rs3924999 (p = .05).

      Conclusions

      A missense mutation on rs3924999 of the neuregulin 1 gene may have a functional effect on prepulse inhibition in both schizophrenia and healthy control populations.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Stefansson H.
        • Sigurdsson E.
        • Steinthorsdottir V.
        • Bjornsdottir S.
        • Sigmundsson T.
        • Ghosh S.
        • et al.
        Neuregulin 1 and susceptibility to schizophrenia.
        Am J Hum Genet. 2002; 71: 877-892
        • Braff D.L.
        • Geyer M.A.
        Sensorimotor gating and schizophrenia.
        Arch Gen Psychiatry. 1990; 47: 181-188
        • Cadenhead K.S.
        • Light G.A.
        • Geyer M.A.
        • Braff D.L.
        Sensory gating deficits assessed by the P50 event-related potential in subjects with schizotypal personality disorder.
        Am J Psychiatry. 2000; 157: 55-59
        • Anokhin A.P.
        • Heath A.C.
        • Myers E.
        • Ralano A.
        • Wood S.
        Genetic influences on prepulse inhibition of startle reflex in humans.
        Neurosci Lett. 2003; 353: 45-48
        • Kumari V.
        • Das M.
        • Zachariah E.
        • Ettinger U.
        • Sharma T.
        Reduced prepulse inhibition in unaffected siblings of schizophrenia patients.
        Psychophysiology. 2005; 42: 588-594
        • Swerdlow N.R.
        • Braff D.L.
        • Taaid N.
        • Geyer M.A.
        Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients.
        Arch Gen Psychiatry. 1994; 51: 139-154
        • Braff D.L.
        • Geyer M.A.
        • Swerdlow N.R.
        Human studies of prepulse inhibition of startle: Normal subjects, patient groups, and pharmacological studies.
        Psychopharmacology (Berl). 2001; 156: 234-258
        • Buonanno A.
        • Fischbach G.D.
        Neuregulin and ErbB receptor signaling pathways in the nervous system.
        Curr Opin Neurobiol. 2001; 11: 287-296
        • Falls D.L.
        Neuregulins: functions, forms, and signaling strategies.
        Exp Cell Res. 2003; 284: 14-30
        • Stefansson H.
        • Thorgeirsson T.E.
        • Gulcher J.R.
        • Stefansson K.
        Neuregulin 1 in schizophrenia: Out of Iceland.
        Mol Psychiatry. 2003; 8: 639-640
        • Williams N.M.
        • Preece A.
        • Spurlock G.
        • Norton N.
        • Williams H.J.
        • Zammit S.
        • et al.
        Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia.
        Mol Psychiatry. 2003; 8: 485-487
        • Yang J.Z.
        • Si T.M.
        • Ruan Y.
        • Ling Y.S.
        • Han Y.H.
        • Wang X.L.
        • et al.
        Association study of neuregulin 1 gene with schizophrenia.
        Mol Psychiatry. 2003; 8: 706-709
        • Petryshen T.L.
        • Middleton F.A.
        • Kirby A.
        • Aldinger K.A.
        • Purcell S.
        • Tahl A.R.
        • et al.
        Support for involvement of neuregulin 1 in schizophrenia pathophysiology.
        Mol Psychiatry. 2005; 10 (328): 366-374
        • Tang J.X.
        • Chen W.Y.
        • He G.
        • Zhou J.
        • Gu N.F.
        • Feng G.Y.
        • et al.
        Polymorphisms within 5’ end of the Neuregulin 1 gene are genetically associated with schizophrenia in the Chinese population.
        Mol Psychiatry. 2004; 9: 11-12
        • Norton N.
        • Moskvina V.
        • Morris D.W.
        • Bray N.J.
        • Zammit S.
        • Williams N.M.
        • et al.
        Evidence that interaction between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia.
        Am J Med Genet B Neuropsychiatr Genet. 2006; 141: 96-101
        • Thomson P.A.
        • Christoforou A.
        • Morris S.W.
        • Adie E.
        • Pickard B.S.
        • Porteous D.J.
        • et al.
        Association of Neuregulin 1 with schizophrenia and bipolar disorder in a second cohort from the Scottish population.
        Mol Psychiatry. 2007; 12: 94-104
        • Gu Z.
        • Jiang Q.
        • Fu A.K.
        • Ip N.Y.
        • Yan Z.
        Regulation of NMDA receptors by neuregulin signaling in prefrontal cortex.
        J Neurosci. 2005; 25: 4974-4984
        • Hahn C.G.
        • Wang H.Y.
        • Cho D.S.
        • Talbot K.
        • Gur R.E.
        • Berrettini W.H.
        • et al.
        Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia.
        Nat Med. 2006; 12: 824-828
        • Kendler K.S.
        • MacLean C.J.
        • O’Neill F.A.
        • Burke J.
        • Murphy B.
        • Duke F.
        • et al.
        Evidence for a schizophrenia vulnerability locus on chromosome 8p in the Irish Study of High-Density Schizophrenia Families.
        Am J Psychiatry. 1996; 153: 1534-1540
        • Blouin J.L.
        • Dombroski B.A.
        • Nath S.K.
        • Lasseter V.K.
        • Wolyniec P.S.
        • Nestadt G.
        • et al.
        Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21.
        Nat Genet. 1998; 20: 70-73
        • Kaufmann C.A.
        • Suarez B.
        • Malaspina D.
        • Pepple J.
        • Svrakic D.
        • Markel P.D.
        • et al.
        NIMH Genetics Initiative Millenium Schizophrenia Consortium: Linkage analysis of African-American pedigrees.
        Am J Med Genet. 1998; 81: 282-289
        • Brzustowicz L.M.
        • Honer W.G.
        • Chow E.W.
        • Little D.
        • Hogan J.
        • Hodgkinson K.
        • et al.
        Linkage of familial schizophrenia to chromosome 13q32.
        Am J Hum Genet. 1999; 65: 1096-1103
        • Gurling H.M.
        • Kalsi G.
        • Brynjolfson J.
        • Sigmundsson T.
        • Sherrington R.
        • Mankoo B.S.
        • et al.
        Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21-22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23.
        Am J Hum Genet. 2001; 68: 661-673
        • Suarez B.K.
        • Duan J.
        • Sanders A.R.
        • Hinrichs A.L.
        • Jin C.H.
        • Hou C.
        • et al.
        Genomewide Linkage Scan of 409 European-Ancestry and African American Families with Schizophrenia: Suggestive Evidence of Linkage at 8p23.3-p21.2 and 11p13.1-q14.1 in the Combined Sample.
        Am J Hum Genet. 2006; 78: 315-333
        • Badner J.A.
        • Gershon E.S.
        Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia.
        Mol Psychiatry. 2002; 7: 405-411
        • Lewis C.M.
        • Levinson D.F.
        • Wise L.H.
        • DeLisi L.E.
        • Straub R.E.
        • Hovatta I.
        • et al.
        Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia.
        Am J Hum Genet. 2003; 73: 34-48
        • Duan J.
        • Martinez M.
        • Sanders A.R.
        • Hou C.
        • Krasner A.J.
        • Schwartz D.B.
        • et al.
        Neuregulin 1 (NRG1) and schizophrenia: Analysis of a US family sample and the evidence in the balance.
        Psychol Med. 2005; 35: 1599-1610
        • Thiselton D.L.
        • Webb B.T.
        • Neale B.M.
        • Ribble R.C.
        • O’Neill F.A.
        • Walsh D.
        • et al.
        No evidence for linkage or association of neuregulin-1 (NRG1) with disease in the Irish study of high-density schizophrenia families (ISHDSF).
        Mol Psychiatry. 2004; 9: 777-783
        • Ingason A.
        • Soeby K.
        • Timm S.
        • Wang A.G.
        • Jakobsen K.D.
        • Fink-Jensen A.
        • et al.
        No significant association of the 5’ end of neuregulin 1 and schizophrenia in a large Danish sample.
        Schizophr Res. 2006; 83: 1-5
        • Hong C.J.
        • Huo S.J.
        • Liao D.L.
        • Lee K.
        • Wu J.Y.
        • Tsai S.J.
        Case-control and family-based association studies between the neuregulin 1 (Arg38Gln) polymorphism and schizophrenia.
        Neurosci Lett. 2004; 366: 158-161
        • Li T.
        • Stefansson H.
        • Gudfinnsson E.
        • Cai G.
        • Liu X.
        • Murray R.M.
        • et al.
        Identification of a novel neuregulin 1 at-risk haplotype in Han schizophrenia Chinese patients, but no association with the Icelandic/Scottish risk haplotype.
        Mol Psychiatry. 2004; 9: 698-704
        • Zhao X.
        • Shi Y.
        • Tang J.
        • Tang R.
        • Yu L.
        • Gu N.
        • et al.
        A case control and family based association study of the neuregulin1 gene and schizophrenia.
        J Med Genet. 2004; 41: 31-34
        • Iwata N.
        • Suzuki T.
        • Ikeda M.
        • Kitajima T.
        • Yamanouchi Y.
        • Inada T.
        • et al.
        No association with the neuregulin 1 haplotype to Japanese schizophrenia.
        Mol Psychiatry. 2004; 9: 126-127
        • Tosato S.
        • Dazzan P.
        • Collier D.
        Association between the neuregulin 1 gene and schizophrenia: A systematic review.
        Schizophr Bull. 2005; 31: 613-617
        • McGue M.
        • Gottesman I.I.
        • Rao D.C.
        The transmission of schizophrenia under a multifactorial threshold model.
        Am J Hum Genet. 1983; 35: 1161-1178
        • Kendler K.S.
        • Myers J.M.
        • O’Neill F.A.
        • Martin R.
        • Murphy B.
        • MacLean C.J.
        • et al.
        Clinical features of schizophrenia and linkage to chromosomes 5q, 6p, 8p, and 10p in the Irish Study of High-Density Schizophrenia Families.
        Am J Psychiatry. 2000; 157: 402-408
        • Thaker G.K.
        Current progress in schizophrenia research.
        J Nerv Ment Dis. 2002; 190: 411-412
        • Gottesman I.I.
        • Gould T.D.
        The endophenotype concept in psychiatry: etymology and strategic intentions.
        Am J Psychiatry. 2003; 160: 636-645
        • Lander E.S.
        • Schork N.J.
        Genetic dissection of complex traits.
        Science. 1994; 265: 2037-2048
        • Tsuang M.T.
        Defining alternative phenotypes for genetic studies: what can we learn from studies of schizophrenia?.
        Am J Med Genet. 2001; 105: 8-10
        • Cannon T.D.
        • Gasperoni T.L.
        • van Erp T.G.
        • Rosso I.M.
        Quantitative neural indicators of liability to schizophrenia: Implications for molecular genetic studies.
        Am J Med Genet. 2001; 105: 16-19
        • Hong L.E.
        • Summerfelt A.
        • Wonodi I.
        • Adami H.
        • Buchanan R.W.
        • Thaker G.K.
        Independent domains of inhibitory gating in schizophrenia and the effect of stimulus interval.
        Am J Psychiatry. 2007; 164: 61-65
        • Barrett J.C.
        • Fry B.
        • Maller J.
        • Daly M.J.
        Haploview: Analysis and visualization of LD and haplotype maps.
        Bioinformatics. 2005; 21: 263-265
        • Geyer M.A.
        • Krebs-Thomson K.
        • Braff D.L.
        • Swerdlow N.R.
        Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: A decade in review.
        Psychopharmacology (Berl). 2001; 156: 117-154
        • Go R.C.
        • Perry R.T.
        • Wiener H.
        • Bassett S.S.
        • Blacker D.
        • Devlin B.
        • et al.
        Neuregulin-1 polymorphism in late onset Alzheimer’s disease families with psychoses.
        Am J Med Genet B Neuropsychiatr Genet. 2005; 139: 28-32
        • Lin H.F.
        • Liu Y.L.
        • Liu C.M.
        • Hung S.I.
        • Hwu H.G.
        • Chen W.J.
        Neuregulin 1 gene and variations in perceptual aberration of schizotypal personality in adolescents.
        Psychol Med. 2005; 35: 1589-1598
        • Meehl P.E.
        Schizotaxia, schizotypy and schizophrenia.
        Am Psychologist. 1962; 17: 827-838
        • Lyons M.J.
        • Toomey R.
        • Faraone S.V.
        • Kremen W.S.
        • Yeung A.S.
        • Tsuang M.T.
        Correlates of psychosis proneness in relatives of schizophrenic patients.
        J Abnorm Psychol. 1995; 104: 390-394
        • Kendler K.S.
        • Czajkowski N.
        • Tambs K.
        • Torgersen S.
        • Aggen S.H.
        • Neale M.C.
        • et al.
        Dimensional representations of DSM-IV cluster A personality disorders in a population-based sample of Norwegian twins: A multivariate study.
        Psychol Med. 2006; 36: 1583-1591
        • Cadenhead K.S.
        • Geyer M.A.
        • Braff D.L.
        Impaired startle prepulse inhibition and habituation in patients with schizotypal personality disorder.
        Am J Psychiatry. 1993; 150: 1862-1867
        • Evans L.H.
        • Gray N.S.
        • Snowden R.J.
        Prepulse inhibition of startle and its moderation by schizotypy and smoking.
        Psychophysiology. 2005; 42: 223-231
        • Steinthorsdottir V.
        • Stefansson H.
        • Ghosh S.
        • Birgisdottir B.
        • Bjornsdottir S.
        • Fasquel A.C.
        • et al.
        Multiple novel transcription initiation sites for NRG1.
        Gene. 2004; 342: 97-105
      1. Rao ST, Zhou MM, Merker RJ, Mann MA, Fischbach GD, Gingrich JA (2004): Behavioral alteration in mice with a reduce neuregulin-1 ig domain isoform. Abstract presented at: International Society for Developmental Psychobiology Annual Meeting. Aix-en-Provence, France; June 5–8.

        • Rimer M.
        • Barrett D.W.
        • Maldonado M.A.
        • Vock V.M.
        • Gonzalez-Lima F.
        Neuregulin-1 immunoglobulin-like domain mutant mice: Clozapine sensitivity and impaired latent inhibition.
        NeuroReport. 2005; 16: 271-275
        • Law A.J.
        • Lipska B.K.
        • Weickert C.S.
        • Hyde T.M.
        • Straub R.E.
        • Hashimoto R.
        • et al.
        Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5’ SNPs associated with the disease.
        Proc Natl Acad Sci U S A. 2006; 103: 6747-6752
      2. Chen YJ, Talmage DA, Role LW (2004): Mice haplo-insufficient for cysteine-rich domain containing neuregulin 1 have impaired prepulse inhibition, an endophenotype related to schizophrenia. Abstract presented at: Society for Neuroscience Annual Meeting. Washington, DC; December 4–8.

        • Chen M.S.
        • Bermingham-McDonogh O.
        • Danehy Jr, F.T.
        • Nolan C.
        • Scherer S.S.
        • Lucas J.
        • et al.
        Expression of multiple neuregulin transcripts in postnatal rat brains.
        J Comp Neurol. 1994; 349: 389-400
        • Garcia R.A.
        • Vasudevan K.
        • Buonanno A.
        The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses.
        Proc Natl Acad Sci U S A. 2000; 97: 3596-3601
        • Harrison P.J.
        • Weinberger D.R.
        Schizophrenia genes, gene expression, and neuropathology: On the matter of their convergence.
        Mol Psychiatry. 2005; 10: 40-68
        • Ozaki M.
        • Sasner M.
        • Yano R.
        • Lu H.S.
        • Buonanno A.
        Neuregulin-beta induces expression of an NMDA-receptor subunit.
        Nature. 1997; 390: 691-694
        • Javitt D.C.
        • Lindsley R.W.
        Effects of phencyclidine on prepulse inhibition of acoustic startle response in the macaque.
        Psychopharmacology (Berl). 2001; 156: 165-168
        • van Berckel B.N.
        • Oranje B.
        • van Ree J.M.
        • Verbaten M.N.
        • Kahn R.S.
        The effects of low dose ketamine on sensory gating, neuroendocrine secretion and behavior in healthy human subjects.
        Psychopharmacology (Berl). 1998; 137: 271-281
        • Duncan E.J.
        • Madonick S.H.
        • Parwani A.
        • Angrist B.
        • Rajan R.
        • Chakravorty S.
        • et al.
        Clinical and sensorimotor gating effects of ketamine in normals.
        Neuropsychopharmacology. 2001; 25: 72-83
        • Abel K.M.
        • Allin M.P.
        • Hemsley D.R.
        • Geyer M.A.
        Low dose ketamine increases prepulse inhibition in healthy men.
        Neuropharmacology. 2003; 44: 729-737
        • Paylor R.
        • Glaser B.
        • Mupo A.
        • Ataliotis P.
        • Spencer C.
        • Sobotka A.
        • et al.
        Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome.
        Proc Natl Acad Sci U S A. 2006; 103: 7729-7734
        • Carter R.J.
        • Lione L.A.
        • Humby T.
        • Mangiarini L.
        • Mahal A.
        • Bates G.P.
        • et al.
        Characterization of progressive motor deficits in mice transgenic for the human Huntington’s disease mutation.
        J Neurosci. 1999; 19: 3248-3257
        • Swerdlow N.R.
        • Paulsen J.
        • Braff D.L.
        • Butters N.
        • Geyer M.A.
        • Swenson M.R.
        Impaired prepulse inhibition of acoustic and tactile startle response in patients with Huntington’s disease.
        J Neurol Neurosurg Psychiatry. 1995; 58: 192-200
        • Brody S.A.
        • Conquet F.
        • Geyer M.A.
        Disruption of prepulse inhibition in mice lacking mGluR1.
        Eur J Neurosci. 2003; 18: 3361-3366
        • Brody S.A.
        • Dulawa S.C.
        • Conquet F.
        • Geyer M.A.
        Assessment of a prepulse inhibition deficit in a mutant mouse lacking mGlu5 receptors.
        Mol Psychiatry. 2004; 9: 35-41
        • Cui C.
        • Booker T.K.
        • Allen R.S.
        • Grady S.R.
        • Whiteaker P.
        • Marks M.J.
        • et al.
        The beta3 nicotinic receptor subunit: A component of alpha-conotoxin MII-binding nicotinic acetylcholine receptors that modulate dopamine release and related behaviors.
        J Neurosci. 2003; 23: 11045-11053
        • Yee B.K.
        • Keist R.
        • von Boehmer L.
        • Studer R.
        • Benke D.
        • Hagenbuch N.
        • et al.
        A schizophrenia-related sensorimotor deficit links alpha 3-containing GABAA receptors to a dopamine hyperfunction.
        Proc Natl Acad Sci U S A. 2005; 102: 17154-17159
        • Heldt S.A.
        • Green A.
        • Ressler K.J.
        Prepulse inhibition deficits in GAD65 knockout mice and the effect of antipsychotic treatment.
        Neuropsychopharmacology. 2004; 29: 1610-1619
        • Szumlinski K.K.
        • Lominac K.D.
        • Kleschen M.J.
        • Oleson E.B.
        • Dehoff M.H.
        • Schwarz M.K.
        • et al.
        Behavioral and neurochemical phenotyping of Homer1 mutant mice: Possible relevance to schizophrenia.
        Genes Brain Behav. 2005; 4: 273-288
        • Mukai J.
        • Liu H.
        • Burt R.A.
        • Swor D.E.
        • Lai W.S.
        • Karayiorgou M.
        • et al.
        Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia.
        Nat Genet. 2004; 36: 725-731
        • Geyer M.A.
        • McIlwain K.L.
        • Paylor R.
        Mouse genetic models for prepulse inhibition: An early review.
        Mol Psychiatry. 2002; 7: 1039-1053
        • Cardon L.R.
        • Palmer L.J.
        Population stratification and spurious allelic association.
        Lancet. 2003; 361: 598-604
        • Walss-Bass C.
        • Liu W.
        • Lew D.F.
        • Villegas R.
        • Montero P.
        • Dassori A.
        • et al.
        A novel missense mutation in the transmembrane domain of neuregulin 1 is associated with schizophrenia.
        Biol Psychiatry. 2006; 60: 548-553
        • Hall J.
        • Whalley H.C.
        • Job D.E.
        • Baig B.J.
        • McIntosh A.M.
        • Evans K.L.
        • et al.
        A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms.
        Nat Neurosci. 2006; 9: 1477-1478