Advertisement

Deactivation of the Limbic System During Acute Psychosocial Stress: Evidence from Positron Emission Tomography and Functional Magnetic Resonance Imaging Studies

      Background

      Stress-induced metabolic changes can have detrimental health effects. Newly developed paradigms to investigate stress in neuroimaging environments allow the assessment of brain activation changes in association with the perception of and the metabolic response to stress.

      Methods

      We exposed human subjects to a psychosocial stressor in one positron emission tomography (n = 10) and one functional magnetic resonance imaging (fMRI; n = 40) experiment.

      Results

      We observed a profound deactivation of limbic system components including hippocampus, hypothalamus, medio-orbitofrontal cortex and anterior cingulate cortex in subjects who reacted to the stressor with a significant increase of the endocrine stress marker cortisol. Further, in the fMRI study, the degree of deactivation in the hippocampus was correlated with the release of cortisol in response to the stress task.

      Conclusions

      The observed deactivation of limbic system structures suggests elevated activation at rest and during nonstressful situations. A model is proposed where the observed reduction in limbic system activity is essential for the initiation of the stress response.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sapolsky R.M.
        Why stress is bad for your brain.
        Science. 1996; 273: 749-750
        • Sapolsky R.M.
        Glucocorticoids, stress, and their adverse neurological effects: Relevance to aging.
        Exp Gerontol. 1999; 34: 721-732
        • Lupien S.J.
        • Wilkinson C.W.
        • Briere S.
        • Menard C.
        • Ng Ying Kin N.M.
        • Nair N.P.
        The modulatory effects of corticosteroids on cognition: Studies in young human populations.
        Psychoneuroendocrinology. 2002; 27: 401-416
        • McGaugh J.L.
        • Roozendaal B.
        Role of adrenal stress hormones in forming lasting memories in the brain.
        Curr Opin Neurobiol. 2002; 12: 205-210
        • Wolf O.T.
        HPA axis and memory.
        Best Pract Res Clin Endocrinol Metab. 2003; 17: 287-299
        • Kirschbaum C.
        • Pirke K.M.
        • Hellhammer D.H.
        The ‘Trier Social Stress Test’—a tool for investigating psychobiological stress responses in a laboratory setting.
        Neuropsychobiology. 1993; 28: 76-81
        • Pruessner J.C.
        • Hellhammer D.H.
        • Kirschbaum C.
        Low self-esteem, induced failure and the adrenocortical stress response.
        Personality Individ Differ. 1999; 27: 477-489
        • Dickerson S.S.
        • Kemeny M.E.
        Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research.
        Psychol Bull. 2004; 130: 355-391
        • Wang J.
        • Rao H.
        • Wetmore G.S.
        • Furlan P.M.
        • Korczykowski M.
        • Dinges D.F.
        • Detre J.A.
        Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress.
        PNAS. 2005; 102: 17804-17809
        • Tillfors M.
        • Furmark T.
        • Marteinsdottir I.
        • Fredrikson M.
        Cerebral blood flow during anticipation of public speaking in social phobia: A PET study.
        Biol Psychiatry. 2002; 52: 1113-1119
        • Dedovic K.
        • Renwick R.
        • Mahani N.K.
        • Engert V.
        • Lupien S.J.
        • Pruessner J.C.
        The Montreal Imaging Stress Task: Using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain.
        J Psychiatry Neurosci. 2005; 30: 319-325
        • Pruessner J.C.
        • Champagne F.
        • Meaney M.J.
        • Dagher A.
        Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: A positron emission tomography study using [11C]raclopride.
        J Neurosci. 2004; 24: 2825-2831
        • Kovacs K.J.
        Functional neuroanatomy of the parvocellular vasopressinergic system: Transcriptional responses to stress and glucocorticoid feedback.
        Prog Brain Res. 1998; 119: 31-43
        • Pacak K.
        • McCarty R.
        • Palkovits M.
        • Cizza G.
        • Kopin I.J.
        • Goldstein D.S.
        • Chrousos G.P.
        Decreased central and peripheral catecholaminergic activation in obese Zucker rats.
        Endocrinology. 1995; 136: 4360-4367
        • Herman J.P.
        • Figueiredo H.
        • Mueller N.K.
        • Ulrich-Lai Y.
        • Ostrander M.M.
        • Choi D.C.
        • Cullinan W.E.
        Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness.
        Front Neuroendocrinol. 2003; 24: 151-180
        • Herman J.P.
        • Ostrander M.M.
        • Mueller N.K.
        • Figueiredo H.
        Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis.
        Prog Neuropsychopharmacol Biol Psychiatry. 2005; 29: 1201-1213
        • Jacobson L.
        Hypothalamic-pituitary-adrenocortical axis regulation.
        Endocrinol Metab Clin North Am. 2005; 34: 271-292
        • Dressendorfer R.A.
        • Kirschbaum C.
        • Rohde W.
        • Stahl F.
        • Strasburger C.J.
        Synthesis of a cortisol-biotin conjugate and evaluation as a tracer in an immunoassay for salivary cortisol measurement.
        J Steroid Biochem Mol Biol. 1992; 43: 683-692
        • Raichle M.E.
        • Martin W.R.
        • Herscovitch P.
        • Mintun M.A.
        • Markham J.
        Brain blood flow measured with intravenous H2(15)O.
        J Nucl Med. 1983; 24: 790-798
        • Worsley K.J.
        • Liao C.H.
        • Aston J.
        • Petre V.
        • Duncan G.H.
        • Morales F.
        • Evans A.C.
        A general statistical analysis for fMRI data.
        Neuroimage. 2002; 15: 1-15
        • Worsley K.J.
        • Poline J.B.
        • Friston K.J.
        • Evans A.C.
        Characterizing the response of PET and fMRI data using multivariate linear models.
        Neuroimage. 1997; 6: 305-319
        • Pruessner M.
        • Hellhammer D.
        • Pruessner J.
        • Lupien S.
        Self-reported depressive symptoms and stress levels in healthy young men: Associations with the cortisol response to awakening.
        Psychosom Med. 2003; 65: 92-99
        • Soufer R.
        • Bremner J.D.
        • Arrighi J.A.
        • Cohen I.
        • Zaret B.L.
        • Burg M.M.
        • Goldman-Rakic P.
        Cerebral cortical hyperactivation in response to mental stress in patients with coronary artery disease.
        Proc Natl Acad Sci U S A. 1998; 95: 6454-6459
        • Hugdahl K.
        • Rund B.R.
        • Lund A.
        • Asbjornsen A.
        • Egeland J.
        • Ersland L.
        • Landro N.I.
        • et al.
        Brain activation measured with fMRI during a mental arithmetic task in schizophrenia and major depression.
        Am J Psychiatry. 2004; 161: 286-293
        • Snyder A.W.
        • Mitchell D.J.
        Is integer arithmetic fundamental to mental processing?: The mind’s secret arithmetic.
        Proc Biol Sci. 1999; 266: 587-592
        • Streiner D.L.
        Breaking up is hard to do: The heartbreak of dichotomizing continuous data.
        Can J Psychiatry. 2002; 47: 262-266
        • Gusnard D.A.
        • Raichle M.E.
        Searching for a baseline: functional imaging and resting human brain.
        Nature Rev Neurosci. 2001; 2: 685-694
        • Veenema A.H.
        • Koolhaas J.M.
        • de Kloet E.R.
        Basal and stress-induced differences in HPA axis, 5-HT responsiveness, and hippocampal cell proliferation in two mouse lines.
        Ann N Y Acad Sci. 2004; 1018: 255-265
        • de Kloet E.R.
        • Oitzl M.S.
        • Joels M.
        Stress and cognition: Are corticosteroids good or bad guys?.
        Trends Neurosci. 1999; 22: 422-426
        • Herman J.P.
        • Schafer M.K.
        • Young E.A.
        • Thompson R.
        • Douglass J.
        • Akil H.
        • Watson S.J.
        Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis.
        J Neurosci. 1989; 9: 3072-3082
        • Goursaud A.P.
        • Mendoza S.P.
        • Capitanio J.P.
        Do neonatal bilateral ibotenic acid lesions of the hippocampal formation or of the amygdala impair HPA axis responsiveness and regulation in infant rhesus macaques (Macaca mulatta)?.
        Brain Res. 2006; 1071: 97-104
        • Jacobson L.
        • Sapolsky R.
        The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis.
        Endocrine Reviews. 1991; 12: 118-134
        • Menard J.L.
        • Champagne D.L.
        • Meaney M.J.
        Variations of maternal care differentially influence ‘fear’ reactivity and regional patterns of cFos immunoreactivity in response to the shock-probe burying test.
        Neuroscience. 2004; 129: 297-308
        • de Leon M.J.
        • McRae T.
        • Rusinek H.
        • Convit A.
        • De Santi S.
        • Tarshish C.
        • Golomb J.
        • et al.
        Cortisol reduces hippocampal glucose metabolism in normal elderly, but not in Alzheimer’s disease.
        J Clin Endocrinol Metab. 1997; 82: 3251-3259
        • de Quervain D.J.
        • Henke K.
        • Aerni A.
        • Treyer V.
        • McGaugh J.L.
        • Berthold T.
        • et al.
        Glucocorticoid-induced impairment of declarative memory retrieval is associated with reduced blood flow in the medial temporal lobe.
        Eur J Neurosci. 2003; 17: 1296-1302
        • Joels M.
        Corticosteroid actions in the hippocampus.
        J Neuroendocrinol. 2001; 13: 657-669
        • Karst H.
        • Joels M.
        Corticosterone slowly enhances miniature excitatory postsynaptic current amplitude in mice CA1 hippocampal cells.
        J Neurophysiol. 2005; 94: 3479-3486
        • Davidson R.J.
        Anxiety and affective style: Role of prefrontal cortex and amygdala.
        Biol Psychiatry. 2002; 51: 68-80
        • Everitt B.J.
        • Cardinal R.N.
        • Parkinson J.A.
        • Robbins T.W.
        Appetitive behavior: Impact of amygdala-dependent mechanisms of emotional learning.
        Ann N Y Acad Sci. 2003; 985: 233-250
        • Merali Z.
        • Michaud D.
        • McIntosh J.
        • Kent P.
        • Anisman H.
        Differential involvement of amygdaloid CRH system(s) in the salience and valence of the stimuli.
        Prog Neuropsychopharmacol Biol Psychiatry. 2003; 27: 1201-1212
        • Diorio D.
        • Viau V.
        • Meaney M.J.
        The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress.
        J Neurosci. 1993; 13: 3839-3847
        • Sullivan R.M.
        • Gratton A.
        Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats.
        J Neurosci. 1999; 19: 2834-2840
        • Bush G.
        • Luu P.
        • Posner M.I.
        Cognitive and emotional influences in anterior cingulate cortex.
        Trends Cogn Sci. 2000; 4: 215-222
        • Luu P.
        • Posner M.I.
        Anterior cingulate cortex regulation of sympathetic activity.
        Brain. 2003; 126: 2119-2120
        • Lazarus R.S.
        From psychological stress to the emotions: A history of changing outlooks.
        Annu Rev Psychol. 1993; 44: 1-21
        • Ullsperger M.
        • von Cramon D.Y.
        Error monitoring using external feedback: Specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging.
        J Neurosci. 2003; 23: 4308-4314
        • Bush G.
        • Vogt B.A.
        • Holmes J.
        • Dale A.M.
        • Greve D.
        • Jenike M.A.
        • Rosen B.R.
        Dorsal anterior cingulate cortex: A role in reward-based decision making.
        Proc Natl Acad Sci U S A. 2002; 99: 523-528
        • Kirschbaum C.
        • Prussner J.C.
        • Stone A.A.
        • Federenko I.
        • Gaab J.
        • Lintz D.
        • et al.
        Persistent high cortisol responses to repeated psychological stress in a subpopulation of healthy men.
        Psychosom Med. 1995; 57: 468-474
        • Pruessner J.C.
        • Baldwin M.W.
        • Dedovic K.
        • Renwick R.
        • Mahani N.K.
        • Lord C.
        • et al.
        Self-esteem, locus of control, hippocampal volume, and cortisol regulation in young and old adulthood.
        Neuroimage. 2005; 28: 815-826