Advertisement
Original Article| Volume 63, ISSUE 1, P86-91, January 01, 2008

Phencyclidine and Dizocilpine Induced Behaviors Reduced by N-acetylaspartylglutamate Peptidase Inhibition via Metabotropic Glutamate Receptors

      Background

      N-methyl-d-aspartate (NMDA) receptor open channel blockers phencyclidine (PCP) and dizocilpine (MK-801) elicit schizophrenia-like symptoms in humans and in animal models. Group II metabotropic glutamate receptor agonists reverse the behavioral effects of PCP and MK-801 in animal models. N-acetylaspartylglutamate (NAAG), the third most prevalent neurotransmitter in the mammalian nervous system, is a selective group II metabotropic glutamate receptor agonist. We previously reported that ZJ43, a potent inhibitor of the enzymes that inactivate synaptically released NAAG, reduced motor and stereotypic effects of PCP in the rat.

      Methods

      To confirm the efficacy of NAAG peptidase inhibition in decreasing motor behaviors induced by PCP and MK-801, ZJ43 was tested in additional schizophrenia models.

      Results

      ZJ43 reduced MK-801-induced motor activation in a mouse model that has been used to characterize the efficacy of a wide range of pharmacotherapies for this human disorder. In a second mouse strain, the peptidase inhibitor reduced PCP-induced stereotypic movements. ZJ43 also reduced PCP-induced negative symptoms in a resident-intruder assay. The group II metabotropic glutamate receptor antagonist, LY341495, blocked the effect of NAAG peptidase inhibition in these mouse models of positive and negative PCP- and MK-801-induced behaviors. Additionally, LY341495 alone increased some PCP-induced behaviors suggesting that normal levels of NAAG act to moderate the effect of PCP via a group II mGluR.

      Conclusions

      These data support the proposal that NAAG peptidase inhibition and elevation of synaptic NAAG levels represent a new therapeutic approach to treating the positive and negative symptoms of schizophrenia that are modeled by open channel NMDA receptor antagonists.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Carlsson A.
        The current status of the dopamine hypothesis of schizophrenia.
        Neuropsychopharmacology. 1988; 1: 179-186
        • Javitt D.C.
        • Zukin S.R.
        Recent advances in the phencyclidine model of schizophrenia.
        Am J Psychiatry. 1991; 148: 1301-1308
        • Krystal J.H.
        • Karper L.P.
        • Seibyl J.P.
        • Freeman G.K.
        • Delaney R.
        • Bremner J.D.
        • et al.
        Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans.
        Arch Gen Psychiatry. 1994; 51: 199-214
        • Kristiansen L.V.
        • Huerta I.
        • Beneyto M.
        • Meador-Woodruff J.H.
        NMDA receptors and schizophrenia.
        Current Opinion in Pharm. 2007; 7: 48-55
        • Heresco-Levy U.
        Glutamatergic neurotransmission modulators as emerging new drugs for schizophrenia.
        Expert Opin Emerg Drugs. 2005; 10: 827-844
        • MacDonald 3rd, A.W.
        • Chafee M.V.
        Translational and developmental perspective on N-methyl-D-aspartate synaptic deficits in schizophrenia.
        Dev Psychopathol. 2006; 18: 853-876
        • Coyle J.T.
        Glutamate and schizophrenia: beyond the dopamine hypothesis.
        Cell Mol Neurobiol. 2006; 26: 363-382
        • Morrison P.D.
        • Pilowsky L.S.
        Schizophrenia: more evidence for less glutamate.
        Expert Rev Neurother. 2007; 7: 29-31
        • Moghaddam B.
        • Adams B.W.
        Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats.
        Science. 1998; 281: 1349-1352
        • Cartmell J.
        • Monn J.A.
        • Schoepp D.D.
        The metabotropic glutamate 2/3 receptor agonists LY354740 and LY379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviors in rats.
        J Pharmacol Exp Ther. 1999; 291: 161-170
        • Cartmell J.
        • Monn J.A.
        • Schoepp D.D.
        Tolerance to the motor impairment, but not to the reversal of PCP-induced motor activities by oral administration of the mGlu2/3 receptor agonist, LY379268.
        Naunyn Schmiedebergs Arch Pharmacol. 2000; 361: 39-46
        • Swanson C.J.
        • Schoepp D.D.
        The group II metabotropic glutamate receptor agonist (-)-2-oxa-4-aminobicyclo[3.1.0.]hexane-4,6-dicarboxylate (LY379268) and clozapine reverse phencyclidine-induced behaviors in monoamine-depleted rats.
        J Pharmacol Exp Ther. 2002; 303: 919-927
        • Krystal J.H.
        • Abi-Saab W.
        • Perry E.
        • D’Souza D.C.
        • Liu N.
        • Gueorguieva R.
        • et al.
        Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects.
        Psychopharmacology (Berl). 2005; 179: 303-309
        • Harrison P.J.
        • Weinberger D.R.
        Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence.
        Mol Psychiatry. 2005; 10 (image 5): 40-68
        • Heresco-Levy U.
        • Javitt D.C.
        • Ebstein R.
        • Vass A.
        • Lichtenberg P.
        • Bar G.
        • et al.
        D-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia.
        Biol Psychiatry. 2005; 57: 577-585
        • Javitt D.C.
        Is the glycine site half saturated or half unsaturated?.
        Curr Opin Psychiatry. 2006; 19: 151-157
        • Pilowsky L.S.
        • Bressan R.A.
        • Stone J.M.
        • Erlandsson K.
        • Mulligan R.S.
        • Krystal J.H.
        • et al.
        First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients.
        Mol Psychiatry. 2006; 11: 118-119
        • Curatolo A.D.
        • Arcangelo P.
        • Lino A.
        • Brancati A.
        Distribution of N-acetyl-aspartic and N-acetyl-aspartyl-glutamic acids in nervous tissue.
        J Neurochem. 1965; 12: 339-342
        • Cangro C.B.
        • Namboodiri M.A.
        • Sklar L.A.
        • Corigliano-Murphy A.
        • Neale J.H.
        Immunohistochemistry and biosynthesis of N-acetylaspartylglutamate in spinal sensory ganglia.
        J Neurochem. 1987; 49: 1579-1588
        • Fuhrman S.
        • Palkovits M.
        • Cassidy M.
        • Neale J.H.
        The regional distribution of N-acetylaspartylglutamate (NAAG) and peptidase activity against NAAG in the rat nervous system.
        J Neurochem. 1994; 62: 275-281
        • Wroblewska B.
        • Wroblewski J.T.
        • Pshenichkin S.
        • Surin A.
        • Sullivan S.E.
        • Neale J.H.
        N-Acetylaspartylglutamate selectively activates mGluR3 receptors in transfected cells.
        J. Neurochem. 1997; 69: 174-181
        • Schweitzer C.
        • Kratzeisen C.
        • Adam G.
        • Lundstrom K.
        • Malherbe P.
        • Ohresser S.
        • et al.
        Characterization of -LY354740 binding to rat mGlu2 and mGlu3 receptors expressed in CHO cells using Semliki Forest virus vectors.
        Neuropharmacology. 2000; 39: 1700-1706
        • Coyle J.T.
        The nagging question of the function of N-acetylaspartylglutamate.
        Neurobiol Dis. 1997; 4: 231-238
        • Neale J.H.
        • Bzdega T.
        • Wroblewska B.
        N-Acetylaspartylglutamate: the most abundant peptide neurotransmitter in the mammalian central nervous system.
        J Neurochem. 2000; 75: 443-452
        • Neale J.H.
        • Olszewski R.T.
        • Gehl L.M.
        • Wroblewska B.
        • Bzdega T.
        The neurotransmitter N-acetylaspartylglutamate in models of pain, ALS, diabetic neuropathy, CNS injury and schizophrenia.
        Trends Pharmacol Sci. 2005; 26: 477-484
        • Carter R.E.
        • Feldman A.R.
        • Coyle J.T.
        Prostate-specific membrane antigen is a hydrolase with substrate and pharmacologic characteristics of a neuropeptidase.
        Proc Natl Acad Sci U S A. 1996; 93: 749-753
        • Bzdega T.
        • Turi T.
        • Wroblewska B.
        • She D.
        • Chung H.S.
        • Kim H.
        • et al.
        Molecular cloning of a peptidase against N-acetylaspartylglutamate from a rat hippocampal cDNA library.
        J Neurochem. 1997; 69: 2270-2277
        • Luthi-Carter R.
        • Barczak A.K.
        • Speno H.
        • Coyle J.T.
        Hydrolysis of the neuropeptide N-acetylaspartylglutamate (NAAG) by cloned human glutamate carboxypeptidase II.
        Brain Res. 1998; 795: 341-348
        • Bzdega T.
        • Crowe S.L.
        • Ramadan E.R.
        • Sciarretta K.H.
        • Olszewski R.T.
        • Ojeifo O.A.
        • et al.
        The cloning and characterization of a second brain enzyme with NAAG peptidase activity.
        J Neurochem. 2004; 89: 627-635
        • Zhou J.
        • Neale J.H.
        • Pomper M.G.
        • Kozikowski A.P.
        NAAG peptidase inhibitors and their potential for diagnosis and therapy.
        Nat Rev Drug Discov. 2005; 4: 1015-1026
        • Olszewski R.T.
        • Bukhari N.
        • Zhou J.
        • Kozikowski A.P.
        • Wroblewski J.T.
        • Shamimi-Noori S.
        • et al.
        NAAG peptidase inhibition reduces locomotor activity and some stereotypes in the PCP model of schizophrenia via group II mGluR.
        J Neurochem. 2004; 89: 876-885
        • Kingston A.E.
        • Ornstein P.L.
        • Wright R.A.
        • Johnson B.G.
        • Mayne N.G.
        • Burnett J.P.
        • et al.
        LY341495 is a nanomolar potent and selective antagonist of group II metabotropic glutamate receptors.
        Neuropharmacology. 1998; 37: 1-12
        • Deutsch S.I.
        • Rosse R.B.
        • Schwartz B.L.
        • Powell D.G.
        • Mastropaolo J.
        Stress and a glycinergic intervention interact in the modulation of MK-801-elicited mouse popping behavior.
        Pharmacol Biochem Behav. 1999; 62: 395-398
        • Deutsch S.I.
        • Rosse R.B.
        • Billingslea E.N.
        • Bellack A.S.
        • Mastropaolo J.
        Topiramate antagonizes MK-801 in an animal model of schizophrenia.
        Eur J Pharmacol. 2002; 449: 121-125
        • Mastropaolo J.
        • Rosse R.B.
        • Deutsch S.I.
        Anabasine, a selective nicotinic acetylcholine receptor agonist, antagonizes MK-801-elicited mouse popping behavior, an animal model of schizophrenia.
        Behav Brain Res. 2004; 153: 419-422
        • Rosse R.B.
        • Mastropaolo J.
        • Sussman D.M.
        • Koetzner L.
        • Morn C.B.
        • Deutsch S.I.
        Computerized measurement of MK-801-elicited popping and hyperactivity in mice.
        Clin Neuropharmacol. 1995; 18: 448-457
        • Kozikowski A.P.
        • Zhang J.
        • Nan F.
        • Petukhov P.A.
        • Grajkowska E.
        • Wroblewski J.T.
        • et al.
        Synthesis of Urea-Based Inhibitors as Active Site Probes of Glutamate Carboxypeptidase II: Efficacy as Analgesic Agents.
        J Med Chem. 2004; 47: 1729-1738
        • Zhong C.
        • Zhao X.
        • Van K.C.
        • Bzdega T.
        • Smyth A.
        • Zhou J.
        • et al.
        NAAG peptidase inhibitor increases dialysate NAAG and reduces glutamate, aspartate and GABA levels in the dorsal hippocampus following fluid percussion injury in the rat.
        J Neurochem. 2006; 97: 1015-1025
        • Deutsch S.I.
        • Rosse R.B.
        • Billingslea E.N.
        • Bellack A.S.
        • Mastropaolo J.
        Modulation of MK-801-elicited mouse popping behavior by galantamine is complex and dose-dependent.
        Life Sci. 2003; 73: 2355-2361
        • Chilton M.
        • Mastropaolo J.
        • Rosse R.B.
        • Bellack A.S.
        • Deutsch S.I.
        Behavioral consequences of methyllycaconitine in mice: a model of alpha7 nicotinic acetylcholine receptor deficiency.
        Life Sci. 2004; 74: 3133-3139
        • Javitt D.C.
        • Coyle J.T.
        Decoding schizophrenia.
        Sci Am. 2004; 290: 48-55
        • Buckley P.F.
        • Stahl S.M.
        Pharmacological treatment of negative symptoms of schizophrenia: therapeutic opportunity or Cul-de-sac?.
        Acta Psychiatr Scand. 2007; 115: 93-100
        • Sams-Dodd F.
        Effects of diazepam, citalopram, methadone and naloxone on PCP-induced stereotyped behaviour and social isolation in the rat social interaction test.
        Neurosci Biobehav Rev. 1998; 23: 287-293
        • Tyler C.B.
        • Miczek K.A.
        Effects of phencyclidine on aggressive behavior in mice.
        Pharmacol Biochem Behav. 1982; 17: 503-510
        • Carlsson A.
        The neurochemical circuitry of schizophrenia.
        Pharmacopsychiatry. 2006; 39: S10-S14
        • Deutsch S.I.
        • Rosse R.B.
        • Schwartz B.L.
        • Mastropaolo J.
        A revised excitotoxic hypothesis of schizophrenia: therapeutic implications.
        Clin Neuropharmacol. 2001; 24: 43-49
        • Tsai G.
        • Passani L.A.
        • Slusher B.S.
        • Carter R.
        • Baer L.
        • Kleinman J.E.
        • et al.
        Abnormal excitatory neurotransmitter metabolism in schizophrenic brains.
        Arch Gen Psychiatry. 1995; 52: 829-836
        • Coyle J.T.
        • Tsai G.
        • Goff D.
        Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia.
        Ann NY Acad Sci. 2003; 1003: 318-327
        • Siekmeier P.J.
        • Hasselmo M.E.
        • Howard M.W.
        • Coyle J.
        Modeling of context-dependent retrieval in hippocampal region CA1: implications for cognitive function in schizophrenia.
        Schizophr Res. 2007; 89: 177-190
        • Bergeron R.
        • Coyle J.T.
        • Tsai G.
        • Greene R.W.
        NAAG reduces NMDA receptor current in CA1 hippocampal pyramidal neurons of acute slices and dissociated neurons.
        Neuropsychopharmacology. 2005; 30: 7-16
        • Bergeron R.
        • Imamura Y.
        • Frangioni J.V.
        • Greene R.W.
        • Coyle J.T.
        Endogenous N-acetylaspartylglutamate reduced NMDA receptor-dependent current neurotransmission in the CA1 area of the hippocampus.
        J Neurochem. 2007; 100: 346-357
        • Lea 4th, P.M.
        • Wroblewska B.
        • Sarvey J.M.
        • Neale J.H.
        Beta-NAAG rescues LTP from blockade by NAAG in rat dentate gyrus via the type 3 metabotropic glutamate receptor.
        J Neurophysiol. 2001; 85: 1097-1106
        • Losi G.
        • Vicini S.
        • Neale J.
        NAAG fails to antagonize synaptic and extrasynaptic NMDA receptors in cerebellar granule neurons.
        Neuropharmacology. 2004; 46: 490-496
        • Tyszkiewicz J.P.
        • Gu Z.
        • Wang X.
        • Cai X.
        • Yan Z.
        Group II metabotropic glutamate receptors enhance NMDA receptor currents via a protein kinase C-dependent mechanism in pyramidal neurones of rat prefrontal cortex.
        J Physiol. 2004; 554: 765-777
        • Ghose S.
        • Weickert C.S.
        • Colvin S.M.
        • Coyle J.T.
        • Herman M.M.
        • Hyde T.M.
        • et al.
        Glutamate carboxypeptidase II gene expression in the human frontal and temporal lobe in schizophrenia.
        Neuropsychopharmacology. 2004; 29: 117-125
        • Nudmamud S.
        • Reynolds L.M.
        • Reynolds G.P.
        N-acetylaspartate and N-Acetylaspartylglutamate deficits in superior temporal cortex in schizophrenia and bipolar disorder: a postmortem study.
        Biol Psychiatry. 2003; 53: 1138-1141
        • O’Neill M.F.
        • Heron-Maxwell C.
        • Conway M.W.
        • Monn J.A.
        • Ornstein P.
        Group II metabotropic glutamate receptor antagonists LY341495 and LY366457 increase locomotor activity in mice.
        Neuropharmacology. 2003; 45: 565-574
        • Yamamoto T.
        • Hirasawa S.
        • Wroblewska B.
        • Grajkowska E.
        • Zhou J.
        • Kozikowski A.
        • et al.
        Antinociceptive effects of N-acetylaspartylglutamate (NAAG) peptidase inhibitors ZJ-11, ZJ-17 and ZJ-43 in the rat formalin test and in the rat neuropathic pain model.
        Eur J Neurosci. 2004; 20: 483-494
        • Yamamoto T.
        • Saito O.
        • Aoe T.
        • Bartolozzi A.
        • Sarva J.
        • Zhou J.
        • et al.
        Local administration of N-acetylaspartylglutamate (NAAG) peptidase inhibitors is analgesic in peripheral pain in rats.
        Eur J Neurosci. 2007; 25: 147-158
        • Linden A.-M.
        • Schoepp D.D.
        Metabotropic glutamate receptor targets for neuropsychiatric disorders.
        Drug Discovery Today: Therapeutic Strategies. 2006; 3: 507-517
        • Galici R.
        • Echemendia N.G.
        • Rodriguez A.L.
        • Conn P.J.
        A selective allosteric potentiator of metabotropic glutamate (mGlu) 2 receptors has effects similar to an orthosteric mGlu2/3 receptor agonist in mouse models predictive of antipsychotic activity.
        J Pharmacol Exp Ther. 2005; 315: 1181-1187