Advertisement
Original Article| Volume 63, ISSUE 1, P80-85, January 01, 2008

Increased Right Prefrontal Cortical Folding in Adolescents at Risk of Schizophrenia for Cognitive Reasons

      Background

      Two of the strongest predictors of later schizophrenia in the Edinburgh High Risk Study (EHRS) were the presence of schizotypal features and increased right prefrontal lobe cortical folding. We examined the association between these measures in adolescents at enhanced risk of developing schizophrenia due to cognitive impairment.

      Methods

      One hundred forty-three adolescents receiving special education were divided into two groups using the cut-off on the Structured Interview for Schizotypy (SIS) which optimally predicted later schizophrenia in the EHRS. Each participant received a structural magnetic resonance imaging scan. Prefrontal tissue volumes and a standard measure of cortical folding, the gyrification index (GI), were determined automatically using automated (A)-GI methodology.

      Results

      Those who scored above the SIS cut-off had a significantly higher right prefrontal lobe GI compared to those below the cut-off (F = 4.72, p = .03). GI correlated strongly with prefrontal tissue volumes, although when prefrontal volume was added as a covariate to the GI analysis a trend towards a group difference remained evident.

      Conclusions

      The level of schizotypal cognitions among adolescents with cognitive impairment identifies a group with the same pattern of cortical folding seen in those with familial risk factors who later develop the disorder. Increased right prefrontal GI may reflect disordered connectivity in individuals with the greatest risk of developing schizophrenia.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Johnstone E.C.
        • Ebmeier K.P.
        • Miller P.
        • Owens D.G.
        • Lawrie S.M.
        Predicting schizophrenia: findings from the Edinburgh High-Risk Study.
        Br J Psychiatry. 2005; 186: 18-25
        • Keshavan M.S.
        • Diwadkar V.A.
        • Montrose D.M.
        • Rajarethinam R.
        • Sweeney J.A.
        Premorbid indicators and risk for schizophrenia: a selective review and update.
        Schizophr Res. 2005; 79: 45-57
        • Cosway R.
        • Byrne M.
        • Clafferty R.
        • Hodges A.
        • Grant E.
        • Abukmeil S.S.
        • et al.
        Neuropsychological change in young people at high risk for schizophrenia: results from the first two neuropsychological assessments of the Edinburgh High Risk Study.
        Psychol Med. 2000; 30: 1111-1121
        • Fuller R.
        • Nopoulos P.
        • Arndt S.
        • O’Leary D.
        • Ho B.C.
        • Andreasen N.C.
        Longitudinal assessment of premorbid cognitive functioning in patients with schizophrenia through examination of standardized scholastic test performance.
        Am J Psychiatry. 2002; 159: 1183-1189
        • Heaton R.K.
        • Gladsjo J.A.
        • Palmer B.W.
        • Kuck J.
        • Marcotte T.D.
        • Jeste D.V.
        Stability and course of neuropsychological deficits in schizophrenia.
        Arch Gen Psychiatry. 2001; 58: 24-32
        • Aylward E.
        • Walker E.
        • Bettes B.
        Intelligence in schizophrenia: meta-analysis of the research.
        Schizophr Bull. 1984; 10: 430-459
        • Turner T.H.
        Schizophrenia and mental handicap: an historical review, with implications for further research.
        Psychol Med. 1989; 19: 301-314
        • Bonnici H.
        • Moorhead T.W.J.
        • Stanfield A.C.
        • Harris J.M.
        • Owens D.G.C.
        • Johnstone E.C.
        • et al.
        Prefrontal lobe gyrification in schizophrenia, mental retardation and comorbid groups: an automated study.
        Neuroimage. 2007; 35: 648-654
        • Moorhead T.W.
        • Job D.E.
        • Whalley H.C.
        • Sanderson T.L.
        • Johnstone E.C.
        • Lawrie S.M.
        Voxel-based morphometry of comorbid schizophrenia and learning disability: analyses in normalized and native spaces using parametric and nonparametric statistical methods.
        Neuroimage. 2004; 22: 188-202
        • Sanderson T.L.
        • Best J.J.
        • Doody G.A.
        • Owens D.G.
        • Johnstone E.C.
        Neuroanatomy of comorbid schizophrenia and learning disability: a controlled study.
        Lancet. 1999; 354: 1867-1871
        • Kendler K.S.
        • Lieberman J.A.
        • Walsh D.
        The Structured Interview for Schizotypy (SIS): a preliminary report.
        Schizophr Bull. 1989; 15: 559-571
        • Achenbach T.L.
        Integrative Guide for the 1991 CBCL/4-18, YSR, and TRF Profiles.
        University of Vermont Department of Psychiatry, Burlington, VT1991
      1. Johnstone EC, Owens DGC, Hoare P, Gaur S, Spencer MD, Stanfield AC, et al. (in press): Schizotypal cognitions as a predictor of psychopathology in adolescents with mild intellectual impairment. Br J Psychiatry.

        • Harris J.M.
        • Whalley H.
        • Yates S.
        • Miller P.
        • Johnstone E.C.
        • Lawrie S.M.
        Abnormal cortical folding in high-risk individuals: a predictor of the development of schizophrenia?.
        Biological Psychiatry. 2004; 56: 182-189
      2. Harris JM, Moorhead TWJ, Miller P, McIntosh AM, Bonnici HM, Owens DGC, et al. (in press): Increased prefrontal gyrification in a large high risk cohort characterizes those who develop schizophrenia and reflects abnormal prefrontal development. Biol Psychiatry.

        • Moorhead T.W.
        • Harris J.M.
        • Stanfield A.C.
        • Job D.E.
        • Best J.J.
        • Johnstone E.C.
        • et al.
        Automated computation of the Gyrification Index in prefrontal lobes: methods and comparison with manual implementation.
        Neuroimage. 2006; 31: 1560-1566
        • Zilles K.
        • Armstrong E.
        • Schleicher A.
        • Kretschmann H.J.
        The human pattern of gyrification in the cerebral cortex.
        Anat Embryol (Berl). 1988; 179: 173-179
        • Miller P.
        • Byrne M.
        • Hodges A.
        • Lawrie S.M.
        • Owens D.G.
        • Johnstone E.C.
        Schizotypal components in people at high risk of developing schizophrenia: early findings from the Edinburgh High-Risk Study.
        Br J Psychiatry. 2002; 180: 179-184
        • Wechsler D.
        Wechsler Adult Intelligence Scale.
        3rd ed. Psychological Corporation, New York1992
        • Wechsler D.
        Wechsler Intelligence Scale for Children.
        3rd ed. Psychological Corporation, New York1999
        • Ashburner J.
        • Friston K.J.
        Voxel-based morphometry–the methods.
        Neuroimage. 2000; 11: 805-821
        • Spencer M.D.
        • Moorhead T.W.
        • Lymer G.K.
        • Job D.E.
        • Muir W.J.
        • Hoare P.
        • et al.
        Structural correlates of intellectual impairment and autistic features in adolescents.
        Neuroimage. 2006; 33: 1136-1144
        • Falkai P.
        • Honer W.G.
        • Kamer T.
        • Dustert S.
        • Vogeley K.
        • Schneider-Axmann T.
        • et al.
        Disturbed frontal gyrification within families affected with schizophrenia.
        J Psychiatr Res. 2006;
        • Sallet P.C.
        • Elkis H.
        • Alves T.M.
        • Oliveira J.R.
        • Sassi E.
        • Campi de Castro C.
        • et al.
        Reduced cortical folding in schizophrenia: an MRI morphometric study.
        Am J Psychiatry. 2003; 160: 1606-1613
        • Vogeley K.
        • Tepest R.
        • Pfeiffer U.
        • Schneider-Axmann T.
        • Maier W.
        • Honer W.G.
        • et al.
        Right frontal hypergyria differentiation in affected and unaffected siblings from families multiply affected with schizophrenia: a morphometric mri study.
        Am J Psychiatry. 2001; 158: 494-496
        • Narr K.L.
        • Bilder R.M.
        • Kim S.
        • Thompson P.M.
        • Szeszko P.
        • Robinson D.
        • et al.
        Abnormal gyral complexity in first-episode schizophrenia.
        Biol Psychiatry. 2004; 55: 859-867
        • Jou R.J.
        • Hardan A.Y.
        • Keshavan M.S.
        Reduced cortical folding in individuals at high risk for schizophrenia: a pilot study.
        SchizophrRes. 2005; 75: 309-313
        • Yucel M.
        • Wood S.J.
        • Phillips L.J.
        • Stuart G.W.
        • Smith D.J.
        • Yung A.
        • et al.
        Morphology of the anterior cingulate cortex in young men at ultra-high risk of developing a psychotic illness.
        Br J Psychiatry. 2003; 182: 518-524
        • Fornito A.
        • Yucel M.
        • Wood S.
        • Stuart G.W.
        • Buchanan J.A.
        • Proffitt T.
        • et al.
        Individual differences in anterior cingulate/paracingulate morphology are related to executive functions in healthy males.
        Cereb Cortex. 2004; 14: 424-431
        • Armstrong E.
        • Schleicher A.
        • Omran H.
        • Curtis M.
        • Zilles K.
        The ontogeny of human gyrification.
        Cereb Cortex. 1995; 5: 56-63
        • Kochunov P.
        • Mangin J.F.
        • Coyle T.
        • Lancaster J.
        • Thompson P.
        • Riviere D.
        • et al.
        Age-related morphology trends of cortical sulci.
        Hum Brain Mapp. 2005; 26: 210-220
        • Toro R.
        • Burnod Y.
        A morphogenetic model for the development of cortical convolutions.
        Cereb Cortex. 2005; 15: 1900-1913
        • Honey G.D.
        • Pomarol-Clotet E.
        • Corlett P.R.
        • Honey R.A.
        • McKenna P.J.
        • Bullmore E.T.
        • et al.
        Functional dysconnectivity in schizophrenia associated with attentional modulation of motor function.
        Brain. 2005; 128: 2597-2611
        • Lawrie S.M.
        • Buechel C.
        • Whalley H.C.
        • Frith C.D.
        • Friston K.J.
        • Johnstone E.C.
        Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations.
        Biol Psychiatry. 2002; 51: 1008-1011
        • Kanaan R.A.
        • Kim J.S.
        • Kaufmann W.E.
        • Pearlson G.D.
        • Barker G.J.
        • McGuire P.K.
        Diffusion tensor imaging in schizophrenia.
        Biol Psychiatry. 2005; 58: 921-929
        • Burns J.
        • Job D.
        • Bastin M.E.
        • Whalley H.
        • Macgillivray T.
        • Johnstone E.C.
        • et al.
        Structural disconnectivity in schizophrenia: a diffusion tensor magnetic resonance imaging study.
        Br J Psychiatry. 2003; 182: 439-443
        • Rakic P.
        Specification of cerebral cortical areas.
        Science. 1988; 241: 170-176
        • Dehay C.
        • Horsburgh G.
        • Berland M.
        • Killackey H.
        • Kennedy H.
        The effects of bilateral enucleation in the primate fetus on the parcellation of visual cortex.
        Brain Res Dev Brain Res. 1991; 62: 137-141
        • Rakic P.
        Experimental manipulation of cerebral cortical areas in primates.
        Philos Trans R Soc Lond B Biol Sci. 1991; 331: 291-294
        • Van Essen D.C.
        A tension-based theory of morphogenesis and compact wiring in the central nervous system.
        Nature. 1997; 385: 313-318
        • Schlosser R.
        • Gesierich T.
        • Kaufmann B.
        • Vucurevic G.
        • Hunsche S.
        • Gawehn J.
        • et al.
        Altered effective connectivity during working memory performance in schizophrenia: a study with fMRI and structural equation modeling.
        Neuroimage. 2003; 19: 751-763