Advertisement
Original Article| Volume 63, ISSUE 1, P118-124, January 01, 2008

Unaffected Family Members and Schizophrenia Patients Share Brain Structure Patterns: A High-Dimensional Pattern Classification Study

      Background

      A number of studies have provided evidence for genetic modulation of brain structure in unaffected family members (FM) of schizophrenia patients using conventional volumetric analysis. High-dimensional pattern classification methods have been reported to have the capacity to determine subtle and spatially complex structural patterns that distinguish schizophrenia patients from healthy control subjects using standard magnetic resonance imaging. This study investigates whether such endophenotypic patterns are found in FM via similar image analysis approaches.

      Methods

      A high-dimensional pattern classifier was constructed from a group of 69 patients and 79 control subjects, via an analysis that identified a subtle and spatially complex pattern of reduced brain volumes. The constructed classifier was applied to examine brain structure of 30 FM.

      Results

      The classifier indicated that FM had highly overlapping structural profiles with those of patients. Moreover, an orbitofrontal region of relatively increased white matter was found to contribute significantly to the classification, indicating that white matter alterations, along with reductions of gray matter volumes, might be present in patients and unaffected FM.

      Conclusions

      These findings provide evidence that high-dimensional pattern classification can identify complex and subtle structural endophenotypes that are shared by probands and their unaffected FM.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cannon T.D.
        • van Erp T.G.M.
        • Huttunen M.
        • Lonnqvist J.
        • Salonen O.
        • Valanne L.
        • et al.
        Regional gray matter, white matter, and cerebrospinal fluid distributions in schizophrenic patients, their siblings, and controls.
        Arch Gen Psychiatry. 1998; 55: 1084-1091
        • Chapple B.
        • Grech A.
        • Sham P.
        • Toulopoulou T.
        • Walshe M.
        • Schulze K.
        • et al.
        Normal cerebral asymmetry in familial and non-familial schizophrenic probands and their unaffected relatives.
        Schizophr Res. 2004; 67: 33-40
        • O’Driscoll G.A.
        • Florencio P.S.
        • Gagnon D.
        • Wolff A.-L.V.
        • Benkelfat C.
        • Mikula L.
        • et al.
        Amygdala–hippocampal volume and verbal memory in first-degree relatives of schizophrenic patients.
        Psychiatry Res Neuroimag. 2001; 107: 75-85
        • Staal W.G.
        • Hulshoff Pol H.E.
        • Schnack H.G.
        • Hoogendoorn M.L.C.
        • Jellema K.
        • Kahn R.S.
        Structural brain abnormalities in patients with schizophrenia and their healthy siblings.
        Am J Psychiatry. 2000; 157: 416-421
        • van Erp T.G.M.
        • Saleh P.A.
        • Huttunen M.
        • Lonnqvist J.
        • Kaprio J.
        • Salonen O.
        • et al.
        Hippocampal volumes in schizophrenic twins.
        Arch Gen Psychiatry. 2004; 61: 346-353
        • Keshavan M.S.
        • Dick E.
        • Mankowski I.
        • Harenski K.
        • Montrose D.M.
        • Diwadkar V.
        • et al.
        Decreased left amygdala and hippocampal volumes in young offspring at risk for schizophrenia.
        Schizophr Res. 2002; 58: 173-183
        • Keshavan M.S.
        • Montrose D.M.
        • Pierri J.N.
        • Dick E.L.
        • Rosenberg D.
        • Talagala L.
        • et al.
        Magnetic resonance imaging and spectroscopy in offspring at risk for schizophrenia: Preliminary studies.
        Prog Neuropsychopharmacol Biol Psychiatry. 1997; 21: 1285-1295
        • Lawrie S.
        • Abukmeil S.
        Brain abnormality in schizophrenia.
        Br J Psychiatry. 1998; 172: 110-120
        • Wood S.J.
        • Yucel M.
        • Velakoulis D.
        • Phillips L.J.
        • Yung A.R.
        • Brewer W.
        • et al.
        Hippocampal and anterior cingulate morphology in subjects at ultra-high-risk for psychosis: the role of family history of psychotic illness.
        Schizophr Res. 2005; 75: 295-301
        • Davatzikos C.
        • Shen D.G.
        • Gur R.C.
        • Wu X.
        • Liu D.
        • Fan Y.
        • et al.
        Whole-brain morphometric study of schizophrenia reveals a spatially complex set of focal abnormalities.
        Arch Gen Psychiatry. 2005; 62: 1218-1227
        • Resnick S.M.
        • Pham D.L.
        • Kraut M.A.
        • Zonderman A.B.
        • Davatzikos C.
        Longitudinal magnetic resonance imaging studies of older adults: A shrinking brain.
        J Neurosci. 2003; 23: 3295-3301
        • Thompson P.
        • Vidal C.
        • Giedd J.
        • Gochman P.
        • Blumenthal J.
        • Nicolson R.
        • et al.
        Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia.
        Proc Nat Acad Sci. 2001; 98: 11650-11655
        • Fan Y.
        • Shen D.
        • Davatzikos C.
        Classification of structural images via high-dimensional image warping, robust feature extraction, and SVM.
        in: Duncan J.S. Gerig G. MICCAI. Vol. 3749. Springer, Berlin/Heidelberg2005: 1-8
        • Fan Y.
        • Shen D.
        • Gur R.C.
        • Gur R.E.
        • Davatzikos C.
        COMPARE: Classification of morphological patterns using adaptive regional elements.
        IEEE Trans Med Imaging. 2007; 26: 93-105
        • Lao Z.
        • Shen D.
        • Xue Z.
        • Karacali B.
        • Resnick S.M.
        • Davatzikos C.
        Morphological classification of brains via high-dimensional shape transformations and machine learning methods.
        Neuroimage. 2004; 21: 46-57
        • Gur R.
        • Mozley P.
        • Resnick S.
        • Levick S.
        • Erwin R.
        • Saykin A.
        • et al.
        Relations among clinical scales in schizophrenia.
        Am J Psychiatry. 1991; 148: 472-478
        • First M.
        • Spitzer R.
        • Gibbon M.
        • Williams J.
        Structured Clinical Interview for DSM-IV Axis I Disorders, Non-Patient Edition (SCID-NP).
        1995
        • Gur R.
        • Maany V.
        • Mozley D.
        • Swanson C.
        • Bilker W.
        • Gur R.
        Subcortical MRI volumes in neuroleptic-naive and treated patients with schizophrenia.
        Am J Psychiatry. 1998; 155: 1711-1717
        • Gur R.
        • Turetsky B.
        • Cowell P.
        • Finkelman C.
        • Maany V.
        • Grossman R.
        • et al.
        Temporolimbic volume reductions in schizophrenia.
        Arch Gen Psychiatry. 2000; 57: 769-775
        • Gur R.
        • Cowell P.
        • Latshaw A.
        • Turetsky B.
        • Grossman R.
        • Arnold S.
        • et al.
        Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia.
        Arch Gen Psychiatry. 2000; 57: 761-768
        • Goldszal A.F.
        • Davatzikos C.
        • Pham D.
        • Yan M.
        • Bryan R.N.
        • Resnick S.M.
        An image processing protocol for the analysis of MR images from an elderly population.
        J Comput Assist Tomogr. 1998; 22: 827-837
        • Shen D.G.
        • Davatzikos C.
        Very high resolution morphometry using mass-preserving deformations and HAMMER elastic registration.
        Neuroimage. 2003; 18: 28-41
        • Vapnik V.N.
        Statistical Learning Theory.
        Wiley, New York1998
        • Davatzikos C.
        • Genc A.
        • Xu D.
        • Resnick S.M.
        Voxel-based morphometry using the RAVENS maps: Methods and validation using simulated longitudinal atrophy.
        Neuroimage. 2001; 14: 1361-1369
        • Friston K.J.
        • Holmes A.P.
        • Worsley K.
        • Poline J.B.
        • Frith C.D.
        • Frackowiak R.S.J.
        Statistical parametric maps in functional imaging: A general linear approach.
        Hum Brain Map. 1995; 2: 189-210
        • Goldstein J.M.
        • Seidman L.J.
        • O’Brien L.M.
        • Horton N.J.
        • Kennedy D.N.
        • Makris N.
        • et al.
        Impact of normal sexual dimorphisms on sex differences in structural brain abnormalities in schizophrenia assessed by magnetic resonance imaging.
        Arch Gen Psychiatry. 2002; 59: 154-164
        • Kubicki M.
        • McCarley R.W.
        • Westin C.F.
        • Park H.J.
        • Maier S.
        • Kikinis R.
        • et al.
        A review of diffusion tensor imaging studies in schizophrenia.
        J Psychiatr Res. 2007; 41: 15-30
        • Davatzikos C.
        Why voxel-based morphometric analysis should be used with great caution when characterizing group differences.
        Neuroimage. 2004; 23: 17-20