Advertisement
Brief Report| Volume 62, ISSUE 10, P1171-1174, November 15, 2007

Download started.

Ok

Preliminary Evidence That Hippocampal Volumes in Monkeys Predict Stress Levels of Adrenocorticotropic Hormone

      Background

      Hippocampal volumes previously determined in monkeys by magnetic resonance imaging are used to test the hypothesis that small hippocampi predict increased stress levels of adrenocorticotropic hormone (ACTH).

      Methods

      Plasma ACTH levels were measured after restraint stress in 19 male monkeys pretreated with saline or hydrocortisone. Monkeys were then randomized to an undisturbed control condition or intermittent social separations followed by new pair formations. After 17 months of exposure to the intermittent social manipulations, restraint stress tests were repeated to determine test/retest correlations.

      Results

      Individual differences in postrestraint stress ACTH levels over the 17-month test/retest interval were remarkably consistent for the saline (rs = .82, p = .0004) and hydrocortisone (rs = .78, p = .001) pretreatments. Social manipulations did not affect postrestraint stress ACTH levels, but monkeys with smaller hippocampal volumes responded to restraint after saline pretreatment with greater increases in ACTH levels with total brain volume variation controlled as a statistical covariate (β = −.58, p = .031). Monkeys with smaller hippocampal volumes also responded with diminished sensitivity to glucocorticoid feedback determined by greater postrestraint ACTH levels after pretreatment with hydrocortisone (β = −.68, p = .010).

      Conclusions

      These findings support clinical reports that small hippocampi may be a risk factor for impaired regulation of the hypothalamic-pituitary-adrenal axis in humans with stress-related psychiatric disorders.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kitayama N.
        • Vaccarino V.
        • Kutner M.
        • Weiss P.
        • Bremner J.D.
        Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: a meta-analysis.
        J Affect Disord. 2005; 88: 79-86
        • Videbech P.
        • Ravnkilde B.
        Hippocampal volume and depression: a meta-analysis of MRI studies.
        Am J Psychiatry. 2004; 161: 1957-1966
        • Campbell S.
        • Macqueen G.
        The role of the hippocampus in the pathophysiology of major depression.
        J Psychiatry Neurosci. 2004; 29: 417-426
        • Sheline Y.I.
        • Sanghavi M.
        • Mintun M.A.
        • Gado M.H.
        Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression.
        J Neurosci. 1999; 19: 5034-5043
        • Starkman M.N.
        • Giordani B.
        • Gebarski S.S.
        • Berent S.
        • Schork M.A.
        • Schteingart D.E.
        Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing’s disease.
        Biol Psychiatry. 1999; 46: 1595-1602
        • McEwen B.S.
        Mood disorders and allostatic load.
        Biol Psychiatry. 2003; 54: 200-207
        • Sapolsky R.M.
        Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders.
        Arch Gen Psychiatry. 2000; 57: 925-935
        • Frodl T.
        • Meisenzahl E.M.
        • Zetzsche T.
        • Hohne T.
        • Banac S.
        • Schorr C.
        • et al.
        Hippocampal and amygdala changes in patients with major depressive disorder and healthy controls during a 1-year follow-up.
        J Clin Psychiatry. 2004; 65: 492-499
        • Sapolsky R.M.
        • Plotsky P.M.
        Hypercortisolism and its possible neural bases.
        Biol Psychiatry. 1990; 27: 937-952
        • Schatzberg A.F.
        Major depression: causes or effects?.
        Am J Psychiatry. 2002; 159: 1077-1079
        • Gilbertson M.W.
        • Shenton M.E.
        • Ciszewski A.
        • Kasai K.
        • Lasko N.B.
        • Orr S.P.
        • et al.
        Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma.
        Nat Neurosci. 2002; 5: 1242-1247
        • Wignall E.L.
        • Dickson J.M.
        • Vaughan P.
        • Farrow T.F.
        • Wilkinson I.D.
        • Hunter M.D.
        • et al.
        Smaller hippocampal volume in patients with recent-onset posttraumatic stress disorder.
        Biol Psychiatry. 2004; 56: 832-836
        • Lyons D.M.
        Stress, depression, and inherited variation in primate hippocampal and prefrontal brain development.
        Psychopharmacol Bull. 2002; 36: 27-43
        • Brady A.G.
        Research techniques for the squirrel monkey (Saimiri).
        ILAR J. 2000; 41: 10-18
        • Lyons D.M.
        • Yang C.
        • Sawyer-Glover A.M.
        • Moseley M.E.
        • Schatzberg A.F.
        Early life stress and inherited variation in monkey hippocampal volumes.
        Arch Gen Psychiatry. 2001; 58: 1145-1151
        • Sullivan E.V.
        • Pfefferbaum A.
        • Swan G.E.
        • Carmelli D.
        Heritability of hippocampal size in elderly twin men: equivalent influence from genes and environment.
        Hippocampus. 2001; 11: 754-762
        • van Erp T.G.
        • Saleh P.A.
        • Huttunen M.
        • Lonnqvist J.
        • Kaprio J.
        • Salonen O.
        • et al.
        Hippocampal volumes in schizophrenic twins.
        Arch Gen Psychiatry. 2004; 61: 346-353
        • Lyons D.M.
        • Yang C.
        • Eliez S.
        • Reiss A.L.
        • Schatzberg A.F.
        Cognitive correlates of white matter growth and stress hormones in female squirrel monkey adults.
        J Neurosci. 2004; 24: 3655-3662
        • Glavin G.B.
        • Pare W.P.
        • Sandbak T.
        • Bakke H.K.
        • Murison R.
        Restraint stress in biomedical research: an update.
        Neurosci Biobehav Rev. 1994; 18: 223-249
        • Zeitzer J.M.
        • Buckmaster C.L.
        • Parker K.J.
        • Hauck C.M.
        • Lyons D.M.
        • Mignot E.
        Circadian and homeostatic regulation of hypocretin in a primate model: implications for the consolidation of wakefulness.
        J Neurosci. 2003; 23: 3555-3560
        • Lyons D.M.
        • Ha C.M.
        • Levine S.
        Social effects and circadian rhythms in squirrel monkey pituitary-adrenal activity.
        Horm Behav. 1995; 29: 177-190
        • Coe C.L.
        • Franklin D.
        • Smith E.R.
        • Levine S.
        Hormonal responses accompanying fear and agitation in the squirrel monkey.
        Physiol Behav. 1982; 29: 1051-1057
        • Lyons D.M.
        • Wang O.J.
        • Lindley S.E.
        • Levine S.
        • Kalin N.H.
        • Schatzberg A.F.
        Separation induced changes in squirrel monkey hypothalamic-pituitary-adrenal physiology resemble aspects of hypercortisolism in humans.
        Psychoneuroendocrinology. 1999; 24: 131-142
        • Herman J.P.
        • Figueiredo H.
        • Mueller N.K.
        • Ulrich-Lai Y.
        • Ostrander M.M.
        • Choi D.C.
        • et al.
        Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness.
        Front Neuroendocrinol. 2003; 24: 151-180
        • Dallman M.F.
        • Akana S.F.
        • Levin N.
        • Walker C.D.
        • Bradbury M.J.
        • Suemaru S.
        • et al.
        Corticosteroids and the control of function in the hypothalamo-pituitary-adrenal (HPA) axis.
        Ann N Y Acad Sci. 1994; 746: 22-31
        • Jacobson L.
        • Sapolsky R.
        The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis.
        Endocr Rev. 1991; 12: 118-134
        • Heuser I.
        • Yassouridis A.
        • Holsboer F.
        The combined dexamethasone/CRH test: a refined laboratory test for psychiatric disorders.
        J Psychiatr Res. 1994; 28: 341-356
        • de Kloet C.S.
        • Vermetten E.
        • Geuze E.
        • Kavelaars A.
        • Heijnen C.J.
        • Westenberg H.G.
        Assessment of HPA-axis function in posttraumatic stress disorder: pharmacological and nonpharmacological challenge tests, a review.
        J Psychiatr Res. 2006; 40: 550-567
        • Buchanan T.W.
        • Kern S.
        • Allen J.S.
        • Tranel D.
        • Kirschbaum C.
        Circadian regulation of cortisol after hippocampal damage in humans.
        Biol Psychiatry. 2004; 56: 651-656
        • Wolf O.T.
        • Convit A.
        • de Leon M.J.
        • Caraos C.
        • Qadri S.F.
        Basal hypothalamo-pituitary-adrenal axis activity and corticotropin feedback in young and older men: relationships to magnetic resonance imaging-derived hippocampus and cingulate gyrus volumes.
        Neuroendocrinology. 2002; 75: 241-249
        • Sapolsky R.M.
        • Zola-Morgan S.
        • Squire L.R.
        Inhibition of glucocorticoid secretion by the hippocampal formation in the primate.
        J Neurosci. 1991; 11: 3695-3704
        • Veldhuis J.D.
        • Keenan D.M.
        • Roelfsema F.
        • Iranmanesh A.
        Aging-related adaptations in the corticotropic axis: modulation by gender.
        Endocrinol Metab Clin North Am. 2005; 34: 993-1014
        • Burleson M.H.
        • Poehlmann K.M.
        • Hawkley L.C.
        • Ernst J.M.
        • Berntson G.G.
        • Malarkey W.B.
        • et al.
        Neuroendocrine and cardiovascular reactivity to stress in mid-aged and older women: long-term temporal consistency of individual differences.
        Psychophysiology. 2003; 40: 358-369
        • Liu R.S.
        • Lemieux L.
        • Bell G.S.
        • Sisodiya S.M.
        • Shorvon S.D.
        • Sander J.W.
        • et al.
        A longitudinal study of brain morphometrics using quantitative magnetic resonance imaging and difference image analysis.
        Neuroimage. 2003; 20: 22-33
        • Raz N.
        • Lindenberger U.
        • Rodrigue K.M.
        • Kennedy K.M.
        • Head D.
        • Williamson A.
        • et al.
        Regional Brain Changes in Aging Healthy Adults: General Trends, Individual Differences and Modifiers.
        Cereb Cortex. 2005;
        • Golub M.S.
        • Anderson J.H.
        Adaptation of pregnant rhesus monkeys to short-term chair restraint.
        Lab Anim Sci. 1986; 36: 507-511
        • Ruys J.D.
        • Mendoza S.P.
        • Capitanio J.P.
        • Mason W.A.
        Behavioral and physiological adaptation to repeated chair restraint in rhesus macaques.
        Physiol Behav. 2004; 82: 205-213
        • Bhatnagar S.
        • Vining C.
        Facilitation of hypothalamic-pituitary-adrenal responses to novel stress following repeated social stress using the resident/intruder paradigm.
        Horm Behav. 2003; 43: 158-165