Advertisement
Original Article| Volume 62, ISSUE 9, P1007-1014, November 01, 2007

Download started.

Ok

Abnormal Magnocellular Pathway Visual Processing in Infants at Risk for Autism

      Background

      A wealth of data has documented impairments in face processing in individuals with autism spectrum disorders (ASD). Recently, the suggestion has been made that these impairments may arise from abnormal development of a subcortical system involved in face processing that originates in the magnocellular pathway of the primate visual system.

      Methods

      To test this developmental hypothesis, we obtained visual perceptual data from 6-month-old infants who were at risk for ASD because they had an older sibling diagnosed with the disorder (“high-risk infants”). To measure sensitivity of the magnocellular (M) pathway and, for comparison, of the parvocellular (P) visual pathway, we employed visual stimuli designed to selectively stimulate the two. Sensitivity data from high-risk infants (n = 13) were compared with data from matched control infants (i.e., “low-risk” infants with no family history of ASD, n = 26).

      Results

      On the P pathway stimulus, high-risk infants exhibited sensitivities that were identical to those of control infants. By contrast, on the M pathway stimulus, high-risk infants exhibited sensitivities nearly twofold greater than those of control infants.

      Conclusions

      Given that ASD and its symptoms are known to run in families, these preliminary results suggest that ASD may be associated with abnormal M pathway function early in infancy, which may aid in early diagnosis of the disorder.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Carter A.
        • Davis N.
        • Klin A.
        • Volkmar F.
        Social development in autism.
        in: Volkmar F. Paul R. Klin A. Cohen D. Handbook of Autism and Pervasive Developmental Disorders. John Wiley & Sons, Inc, Hoboken, NJ2005: 312-334
        • Tager-Flusberg H.
        • Paul R.
        • Lord C.
        Language and communication in autism.
        in: Volkmar F. Paul R. Klin A. Cohen D. Handbook of Autism and Pervasive Developmental Disorders. John Wiley & Sons, Inc, Hoboken, NJ2005: 335-364
        • Hobson P.
        Autism and emotion.
        in: Volkmar F. Paul R. Klin A. Cohen D. Handbook of Autism and Pervasive Developmental Disorders. John Wiley & Sons, Inc, Hoboken, NJ2005: 406-422
        • Rivera S.M.
        • Koldewyn K.
        Unraveling the mystery of motion perception impairments in autism: Some further considerations.
        Curr Psychol Cogn. 2005; 23: 189-197
        • Dakin S.
        • Frith U.
        Vagaries of visual perception in autism.
        Neuron. 2005; 48: 497-507
        • Happe F.
        • Frith U.
        The weak coherence account: Detail-focused cognitive style in autism spectrum disorders.
        J Autism Dev Disord. 2006; 37: 5-25
        • Kellerman G.R.
        • Fan J.
        • Gorman J.M.
        Auditory abnormalities in autism: Toward functional distinctions among findings.
        CNS Spectr. 2005; 10: 748-756
        • Mottron L.
        • Dawson M.
        • Soulieres I.
        • Hubert B.
        • Burack J.
        Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception.
        J Autism Dev Disord. 2006; 36: 27-43
        • Schultz R.
        • Robins D.
        Functional neuroimaging studies of autism spectrum disorders.
        in: Volkmar F.R. Paul R. Klin A. Cohen D. Handbook of Autism and Pervasive Developmental Disorders. John Wiley & Sons, Inc, Hoboken, NJ2005: 515-533
        • Dawson G.
        • Webb S.J.
        • McPartland J.
        Understanding the nature of face processing impairment in autism: Insights from behavioral and electrophysiological studies.
        Dev Neuropsychol. 2005; 27: 403-424
        • Schultz R.T.
        Developmental deficits in social perception in autism: The role of the amygdala and fusiform face area.
        Int J Dev Neurosci. 2005; 23: 125-141
        • Carver L.J.
        • Dawson G.
        Development and neural bases of face recognition in autism.
        Mol Psychiatry. 2002; 7: S18-S20
        • Dawson G.
        • Webb S.J.
        • Wijsman E.
        • Schellenberg G.
        • Estes A.
        • Munson J.
        • et al.
        Neurocognitive and electrophysiological evidence of altered face processing in parents of children with autism: Implications for a model of abnormal development of social brain circuitry in autism.
        Dev Psychopathol. 2005; 17: 679-697
        • Marcus D.
        • Nelson C.A.
        Neural basis and development of face recognition in autism.
        CNS Spectr. 2001; 6: 36-59
        • Adolphs R.
        • Baron-Cohen S.
        • Tranel D.
        Impaired recognition of social emotions following amygdala damage.
        J Cogn Neurosci. 2002; 14: 1264-1274
        • Whalen P.J.
        • Rauch S.L.
        • Etcoff N.L.
        • McInerney S.C.
        • Lee M.B.
        • Jenike M.A.
        Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge.
        J Neurosci. 1998; 148: 411-418
        • Howard M.A.
        • Cowell P.E.
        • Boucher J.
        • Broks P.
        • Mayes A.
        • Farrant A.
        • et al.
        Convergent neuroanatomical and behavioural evidence of an amygdala hypothesis of autism.
        Neuroreport. 2000; 11: 2931-2935
        • Mills C.
        • Amaral D.
        Stereological analysis of amygdala neuron number in autism.
        J Neurosci. 2006; 26: 7674-7679
        • Dobkins K.R.
        • Anderson C.M.
        • Lia B.
        Infant temporal contrast sensitivity functions (tCSFs) mature earlier for luminance than for chromatic stimuli: Evidence for precocious magnocellular development?.
        Vision Res. 1999; 39: 3223-3239
        • Hammarrenger B.
        • Lepore F.
        • Lippe S.
        • Labrosse M.
        • Guillemot J.P.
        • Roy M.S.
        Magnocellular and parvocellular developmental course in infants during the first year of life.
        Doc Ophthalmol. 2003; 107: 225-233
        • Filipek P.A.
        • Accardo P.J.
        • Baranek G.T.
        • Cook Jr, E.H.
        • Dawson G.
        • Gordon B.
        • et al.
        The screening and diagnosis of autistic spectrum disorders.
        J Autism Dev Disord. 1999; 29: 439-484
        • Volkmar F.
        • Chawarska K.
        • Klin A.
        Autism in infancy and early childhood.
        Annu Rev Psychol. 2005; 56: 315-336
        • Zwaigenbaum L.
        • Thurm A.
        • Stone W.
        • Baranek G.
        • Bryson S.
        • Iverson J.
        • et al.
        Studying the emergence of autism spectrum disorders in high risk infants: Methodological and practical issues.
        J Autism Dev Disord. 2007; 37: 466-480
        • Ritvo E.R.
        • Jorde L.B.
        • Mason-Brothers A.
        • Freeman B.J.
        • Pingree C.
        • Jones M.B.
        • et al.
        The UCLA-University of Utah epidemiologic survey of autism: Recurrence risk estimates and genetic counseling.
        Am J Psychiatry. 1989; 146: 1032-1036
        • Chakrabarti S.
        • Fombonne E.
        Pervasive developmental disorders in preschool children.
        JAMA. 2001; 285: 3093-3099
        • Yeargin-Allsopp M.
        • Rice C.
        • Karapurkar T.
        • Doernberg N.
        • Boyle C.
        • Murphy C.
        Prevalence of autism in a US metropolitan area.
        JAMA. 2003; 289: 49-55
        • Dawson G.
        • Webb S.J.
        • Schellenberg G.D.
        • Dager S.
        • Friedman S.
        • Aylward E.
        • et al.
        Defining the broader phenotype of autism: Genetic, brain, and behavioral perspectives.
        Dev Psychopathol. 2002; 14: 581-611
        • Plomin R.
        • McGuffin P.
        Psychopathology in the postgenomic era.
        Annu Rev Psychol. 2003; 54: 205-228
        • Werner E.
        • Dawson G.
        • Munson J.
        • Osterling J.
        Variation in early developmental course in autism and its relation with behavioral outcome at 3-4 years of age.
        J Autism Dev Disord. 2005; 35: 337-350
        • Wimpory D.C.
        • Hobson R.P.
        • Williams J.M.
        • Nash S.
        Are infants with autism socially engaged?.
        J Autism Dev Disord. 2000; 30: 525-536
        • Adrien J.L.
        • Lenoir P.
        • Martineau J.
        • Perrot A.
        • Hameury L.
        • Larmande C.
        • et al.
        Blind ratings of early symptoms of autism based upon family home movies.
        J Am Acad Child Adolesc Psychiatry. 1993; 32: 617-626
        • Osterling J.
        • Dawson G.
        Early recognition of children with autism: A study of first birthday home videotapes.
        J Autism Dev Disord. 1994; 24: 247-257
        • Courchesne E.
        • Carper R.
        • Akshoomoff N.
        Evidence of brain overgrowth in the first year of life in autism.
        JAMA. 2003; 290: 337-344
        • Courchesne E.
        • Redcay E.
        • Kennedy D.P.
        The autistic brain: Birth through adulthood.
        Curr Opin Neurol. 2004; 17: 489-496
        • Yirmiya N.
        • Gamliel I.
        • Shaked M.
        • Sigman M.
        Cognitive and verbal abilities of 24- to 36-month-old siblings of children with autism.
        J Autism Dev Disord. 2007; 37: 218-219
        • Zwaigenbaum L.
        • Bryson S.
        • Rogers T.
        • Roberts W.
        • Brian J.
        • Szatmari P.
        Behavioral manifestations of autism in the first year of life.
        Int J Dev Neurosci. 2005; 23: 143-152
        • Mitchell S.
        • Brian J.
        • Zwaigenbaum L.
        • Roberts W.
        • Szatmari P.
        • Smith I.
        • et al.
        Early language and communication development of infants later diagnosed with autism spectrum disorder.
        J Dev Behav Pediatr. 2006; 27: S69-S78
        • Landa R.
        • Garrett-Mayer E.
        Development in infants with autism spectrum disorders: A prospective study.
        J Child Psychol Psychiatry. 2006; 47: 629-638
        • Yirmiya N.
        • Gamliel I.
        • Pilowsky T.
        • Feldman R.
        • Baron-Cohen S.
        • Sigman M.
        The development of siblings of children with autism at 4 and 14 months: Social engagement, communication, and cognition.
        J Child Psychol Psychiatry. 2006; 47: 511-523
        • Bailey A.
        • Palferman S.
        • Heavey L.
        • Le Couteur A.
        Autism: The phenotype in relatives.
        J Autism Dev Disord. 1998; 28: 369-392
        • Bailey A.
        • Le Couteur A.
        • Gottesman I.
        • Bolton P.
        • Simonoff E.
        • Yuzda E.
        • et al.
        Autism as a strongly genetic disorder: Evidence from a British twin study.
        Psychol Med. 1995; 25: 63-77
        • Pickles A.
        • Starr E.
        • Kazak S.
        • Bolton P.
        • Papanikolaou K.
        • Bailey A.
        • et al.
        Variable expression of the autism broader phenotype: Findings from extended pedigrees.
        J Child Psychol Psychiatry. 2000; 41: 491-502
        • Piven J.
        • Palmer P.
        • Landa R.
        • Santangelo S.
        • Jacobi D.
        • Childress D.
        Personality and language characteristics in parents from multiple-incidence autism families.
        Am J Med Genet. 1997; 74: 398-411
        • Gottesman I.
        • Gould T.D.
        The endophenotype concept in psychiatry: Etymology and strategic intentions.
        Am J Psychiatry. 2003; 160: 636-645
        • Gottesman I.
        • Shields T.
        Schizophrenia and Genetics: A Twin Study Vantage Point.
        Acadmic Press, New York1972
      1. Szatmari P, Maziade M, Zwaigenbaum L, Mérette C, Roy M-A, Palmour R, et al. (in press): Informative phenotypes for genetic studies of psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet.

        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        4th ed. American Psychiatric Association, Washington, DC2004
        • Lord C.
        • Risi S.
        • Lambrecht L.
        • Cook Jr, E.H.
        • Leventhal B.L.
        • DiLavore P.C.
        • et al.
        The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism.
        J Autism Dev Disord. 2000; 30: 205-223
        • Lord C.
        • Rutter M.
        • Le Couteur A.
        Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders.
        J Autism Dev Disord. 1994; 24: 659-685
        • Merigan W.H.
        • Maunsell J.H.
        How parallel are the primate visual pathways?.
        Annu Rev Neurosci. 1993; 16: 369-402
        • Lee B.B.
        • Pokorny J.
        • Smith V.C.
        • Martin P.R.
        • Valberg A.
        Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers.
        J Opt Soc Am A. 1990; 7: 2223-2236
        • Lee B.B.
        • Martin P.R.
        • Valberg A.
        Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker.
        J Physiol. 1989; 414: 223-243
        • Dobkins K.R.
        Moving colors in the lime light.
        Neuron. 2000; 25: 15-18
        • Dobkins K.R.
        • Anderson C.M.
        • Kelly J.P.
        Development of psychophysically-derived detection contours in L- and M- cone contrast space.
        Vision Res. 2001; 41: 1791-1807
        • Atkinson J.
        • Braddick O.
        • Moar K.
        Development of contrast sensitivity over the first 3 months of life in the human infant.
        Vision Res. 1977; 17: 1037-1044
        • Banks M.S.
        • Salapatek P.
        Acuity and contrast sensitivity in 1-, 2-, and 3-month-old human infants.
        Invest Ophthalmol Vis Sci. 1978; 17: 361-365
        • Dobkins K.R.
        • Lia B.
        • Teller D.Y.
        Infant color vision: Temporal contrast sensitivity functions (tCSFs) for chromatic (red/green) stimuli in 3-month-olds.
        Vision Res. 1997; 37: 2699-2716
        • Teller D.Y.
        The forced-choice preferential looking procedure: A psychophysical technique for use with human infants.
        Infant Behav Dev. 1979; 2: 135-153
        • Dobkins K.R.
        • Teller D.Y.
        Infant contrast detectors are selective for direction of motion.
        Vision Res. 1996; 36: 281-294
        • Weibull W.
        A statistical distribution function of wide applicability.
        J Appl Mech. 1951; 18: 292-297
        • Watson A.B.
        Probability summation over time.
        Vision Res. 1979; 19: 515-522
        • Mullen E.
        Mullen Scales of Early Learning.
        Western Psychological Services, Los Angeles1997
        • Bricker D.
        • Squires J.
        The Ages and Stages Questionnaire.
        Paul H. Brookes, Baltimore1999
        • Fombonne E.
        • Bolton P.
        • Prior J.
        • Jordan H.
        • Rutter M.
        A family study of autism: Cognitive patterns and levels in parents and siblings.
        J Child Psychol Psychiatry. 1997; 38: 667-683
        • Szatmari P.
        • Jones M.B.
        • Tuff L.
        • Bartolucci G.
        • Fisman S.
        • Mahoney W.
        Lack of cognitive impairment in first-degree relatives of children with pervasive developmental disorders.
        J Am Acad Child Adolesc Psychiatry. 1993; 32: 1264-1273
        • Zimmerman I.
        • Steiner V.
        • Pond R.
        Preschool Language Scale Examiner’s Manual.
        4th ed. The Psychological Corporation, San Antonio, TX2002
        • Milne E.
        • White S.
        • Campbell R.
        • Swettenham J.
        • Hansen P.
        • Ramus F.
        Motion and form coherence detection in autistic spectrum disorder: Relationship to motor control and 2:4 digit ratio.
        J Autism Dev Disord. 2006; 36: 225-237
        • Amaral D.G.
        • Price J.L.
        Amygdalo-cortical projections in the monkey (Macaca fascicularis).
        J Comp Neurol. 1984; 230: 465-496
        • Krolak-Salmon P.
        • Henaff M.A.
        • Vighetto A.
        • Bertrand O.
        • Mauguiere F.
        Early amygdala reaction to fear spreading in occipital, temporal, and frontal cortex: A depth electrode ERP study in human.
        Neuron. 2004; 42: 665-676
        • Morris J.S.
        • DeGelder B.
        • Weiskrantz L.
        • Dolan R.J.
        Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field.
        Brain. 2001; 124: 1241-1252
        • Morris J.S.
        • Ohman A.
        • Dolan R.J.
        A subcortical pathway to the right amygdala mediating “unseen” fear.
        Proc Natl Acad Sci U S A. 1999; 96: 1680-1685
        • Pasley B.N.
        • Mayes L.C.
        • Schultz R.T.
        Subcortical discrimination of unperceived objects during binocular rivalry.
        Neuron. 2004; 42: 163-172
        • Johnson M.H.
        Subcortical face processing.
        Nat Rev Neurosci. 2005; 6: 766-774
        • Schiller P.H.
        • Malpeli J.G.
        • Schein S.J.
        Composition of geniculostriate input of superior colliculus of the rhesus monkey.
        J Neurophysiol. 1979; 42: 1124-1133
        • Perry V.H.
        • Cowey A.
        Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey.
        Neuroscience. 1984; 12: 1125-1137
        • Hoffmann K.P.
        Conduction velocity in pathways from retina to superior colliculus in the cat: A correlation with receptive-field properties.
        J Neurophysiol. 1973; 36: 409-424
        • Fukuda Y.
        • Stone J.
        Retinal distribution and central projections of Y-, X-, and W-cells of the cat’s retina.
        J Neurophysiol. 1974; 37: 749-772
        • Romanski L.M.
        • Giguere M.
        • Bates J.F.
        • Goldman-Rakic P.S.
        Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey.
        J Comp Neurol. 1997; 379: 313-332
        • Jones E.G.
        • Burton H.
        A projection from the medial pulvinar to the amygdala in primates.
        Brain Res. 1976; 104: 142-147
        • Linke R.
        • De Lima A.D.
        • Schwegler H.
        • Pape H.C.
        Direct synaptic connections of axons from superior colliculus with identified thalamo-amygdaloid projection neurons in the rat: Possible substrates of a subcortical visual pathway to the amygdala.
        J Comp Neurol. 1999; 403: 158-170
        • Klin A.
        • Jones W.
        • Schultz R.
        • Volkmar F.
        The enactive mind, or from actions to cognition: Lessons from autism.
        Philos Trans R Soc Lond B Biol Sci. 2003; 358: 345-360
        • Johnson M.H.
        • Griffin R.
        • Csibra G.
        • Halit H.
        • Farroni T.
        • de Haan M.
        • et al.
        The emergence of the social brain network: Evidence from typical and atypical development.
        Dev Psychopathol. 2005; 17: 599-619
        • Spencer J.
        • O’Brien J.
        • Riggs K.
        • Braddick O.
        • Atkinson J.
        • Wattam-Bell J.
        Motion processing in autism: Evidence for a dorsal stream deficiency.
        Neuroreport. 2000; 11: 2765-2767
        • Milne E.
        • Swettenham J.
        • Hansen P.
        • Campbell R.
        • Jeffries H.
        • Plaisted K.
        High motion coherence thresholds in children with autism.
        J Child Psychol Psychiatry. 2002; 43: 255-263
        • Blake R.
        • Turner L.M.
        • Smoski M.J.
        • Pozdol S.L.
        • Stone W.L.
        Visual recognition of biological motion is impaired in children with autism.
        Psychol Sci. 2003; 14: 151-157
        • Maunsell J.H.
        • Nealey T.A.
        • DePriest D.D.
        Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey.
        J Neurosci. 1990; 10: 3323-3334
        • Demb J.B.
        • Boynton G.M.
        • Best M.
        • Heeger D.J.
        Psychophysical evidence for a magnocellular pathway deficit in dyslexia.
        Vision Res. 1998; 38: 1555-1559
        • Atkinson J.
        • King J.
        • Braddick O.
        • Nokes L.
        • Anker S.
        • Braddick F.
        A specific deficit of dorsal stream function in Williams’ syndrome.
        Neuroreport. 1997; 8: 1919-1922
        • Bertone A.
        • Mottron L.
        • Jelenic P.
        • Faubert J.
        Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity.
        Brain. 2005; 128: 2430-2441
        • Pellicano E.
        • Gibson L.
        • Maybery M.
        • Durkin K.
        • Badcock D.R.
        Abnormal global processing along the dorsal visual pathway in autism: A possible mechanism for weak visuospatial coherence?.
        Neuropsychologia. 2005; 43: 1044-1053
        • Hendry S.H.
        • Calkins D.J.
        Neuronal chemistry and functional organization in the primate visual system.
        Trends Neurosci. 1998; 21: 344-349
        • Lord C.
        • Risi S.
        • DiLavore P.S.
        • Shulman C.
        • Thurm A.
        • Pickles A.
        Autism from 2 to 9 years of age.
        Arch Gen Psychiatry. 2006; 63: 694-701
        • Charman T.
        • Taylor E.
        • Drew A.
        • Cockerill H.
        • Brown J.A.
        • Baird G.
        Outcome at 7 years of children diagnosed with autism at age 2: Predictive validity of assessments conducted at 2 and 3 years of age and pattern of symptom change over time.
        J Child Psychol Psychiatry. 2005; 46: 500-513