Advertisement

Positive Allosteric Modulation of Metabotropic Glutamate 5 (mGlu5) Receptors Reverses N-Methyl-D-Aspartate Antagonist-Induced Alteration of Neuronal Firing in Prefrontal Cortex

      Background

      Several lines of evidence suggest that N-methyl-d-aspartate (NMDA) receptor hypofunction may be associated with schizophrenia. Activation of metabotropic glutamate 5 (mGlu5) receptors enhances NMDA receptor mediated currents in vitro, implying that allosteric modulation of mGlu5 receptors may have therapeutic efficacy for schizophrenia. The aim of this study was to determine if positive allosteric modulators of mGlu5 receptors are effective in reversing two cellular effects of NMDA receptor antagonists that are relevant to schizophrenia: increases in corticolimbic dopamine neurotransmission and disruption of neuronal activity in the prefrontal cortex (PFC).

      Methods

      In freely moving rats, we measured the effects of the positive modulator of mGlu5 receptor 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) alone or in combination with the NMDA antagonist MK801 on 1) spontaneous firing and bursting of medial PFC (mPFC) neurons, and 2) dopamine release as measured by microdialysis in the mPFC and nucleus accumbens (NAc).

      Results

      The predominant effect of CDPPB on mPFC neurons was excitatory, leading to an overall excitatory population response. Pretreatment with CDPPB prevented MK801-induced excessive firing and reduced spontaneous bursting. In contrast, CDPPB had no significant effect on basal dopamine release as compared with control rats and did not alter MK801-induced activation of dopamine release in the mPFC and NAc.

      Conclusions

      These results show that positive modulation of mGlu5 receptors reverses the effects of noncompetitive NMDA antagonists on cortical neuronal firing without affecting dopamine neurotransmission. Thus, these compounds may be effective in ameliorating PFC mediated behavioral abnormalities that results from NMDA receptor hypofunction.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aalto S.
        • Ihalainen J.
        • Hirvonen J.
        • Kajander J.
        • Scheinin H.
        • Tanila H.
        • et al.
        Cortical glutamate-dopamine interaction and ketamine-induced psychotic symptoms in man.
        Psychopharmacology (Berl). 2005; 182: 375-383
        • Abercrombie E.D.
        • Keefe K.A.
        • DiFrischia D.S.
        • Zigmond M.S.
        Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex.
        J Neurochem. 1989; 52: 1655-1658
        • Adams B.
        • Moghaddam B.
        Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine.
        J Neurosci. 1998; 18: 5545-5554
        • Adler C.M.
        • Malhotra A.K.
        • Elman I.
        • Goldberg T.
        • Egan M.
        • Pickar D.
        • et al.
        Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia.
        Am J Psychiatry. 1999; 156: 1646-1649
        • Alagarsamy S.
        • Rouse S.T.
        • Junge C.
        • Hubert G.W.
        • Gutman D.
        • Smith Y.
        • et al.
        NMDA-induced phosphorylation and regulation of mGluR5.
        Pharmacol Biochem Behav. 2002; 73: 299-306
        • Aultman J.M.
        • Moghaddam B.
        Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task.
        Psychopharmacology (Berl). 2001; 153: 353-364
        • Awad H.
        • Hubert G.W.
        • Smith Y.
        • Levey A.I.
        • Conn P.J.
        Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus.
        J Neurosci. 2000; 20: 7871-7879
        • Bakshi V.P.
        • Geyer M.A.
        Multiple limbic regions mediate the disruption of prepulse inhibition produced in rats by the noncompetitive NMDA antagonist dizoclipine.
        J Neurosci. 1998; 18: 8394-8401
        • Campbell U.
        • Lalwani K.
        • Hernandez L.
        • Kinney G.
        • Conn P.
        • Bristow L.
        The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) potentiates PCP-induced cognitive deficits in rats.
        Psychopharmacology (Berl). 2004; 175: 310-318
        • Carlsson A.
        Antipsychotic drugs, neurotransmitters, and schizophrenia.
        Am J Psychiatry. 1978; 135: 164-173
        • Carpenter Jr, W.T.
        • Heinrichs D.W.
        • Alphs L.D.
        Treatment of negative symptoms.
        Schizophr Bull. 1985; 11: 440-452
        • Contractor A.
        • Gereau 4th, R.W.
        • Green T.
        • Heinemann S.F.
        Direct effects of metabotropic glutamate receptor compounds on native and recombinant N-methyl-D-aspartate receptors.
        Proc Natl Acad Sci U S A. 1998; 95: 8969-8974
        • Coyle J.
        The glutamatergic dysfunction hypothesis for schizophrenia.
        Harv Rev Psychiatry. 1996; 3: 241-253
        • Coyle J.T.
        • Tsai G.
        • Goff D.C.
        Ionotropic glutamate receptors as therapeutic targets in schizophrenia.
        Curr Drug Targets CNS Neurol Disord. 2002; 1: 183-189
        • Davis K.L.
        • Kahn R.S.
        • Ko G.
        • Davidson M.
        Dopamine in schizophrenia: A review and reconceptualization.
        Am J Psychiatry. 1991; 148: 1474-1486
        • Delay J.
        • Deniker P.
        Neuroleptic effects of chlorpromazine in therapeutics of neuropsychiatry.
        J Clin Exp Psychopathol. 1955; 16: 104-111
        • Doherty A.J.
        • Palmer M.J.
        • Henley J.M.
        • Collingridge G.L.
        • Jane D.E.
        (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) activates mGlu5, but no mGlu1, receptors expressed in CHO cells and potentiates NMDA responses in the hippocampus.
        Neuropharmacology. 1997; 36: 265-267
        • Fitzjohn S.
        • Kingston A.
        • Lodge D.
        • Collingridge G.
        DHPG-induced LTD in area CA1 of juvenile rat hippocampus; characterisation and sensitivity to novel mGlu receptor antagonists.
        Neuropharmacology. 1999; 38: 1577-1583
        • Gasparini F.
        • Kuhn R.
        • Pin J.P.
        Allosteric modulators of group I metabotropic glutamate receptors: Novel subtype-selective ligands and therapeutic perspectives.
        Curr Opin Pharmacol. 2002; 2: 43-49
        • Gereau 4th, R.W.
        • Heinemann S.F.
        Role of protein kinase C phosphorylation in rapid desensitization of metabotropic glutamate receptor 5.
        Neuron. 1998; 20: 143-151
        • Greene R.
        Circuit analysis of NMDAR hypofunction in the hippocampus, in vitro, and psychosis of schizophrenia.
        Hippocampus. 2001; 11: 569-577
        • Harrison P.
        • Weinberger D.
        Schizophrenia genes, gene expression, and neuropathology: On the matter of their convergence.
        Mol Psychiatry. 2005; 10: 40-68
        • Hauber W.
        • Andersen R.
        The non-NMDA glutamate receptor antagonist GYKI 52466 counteracts locomotor stimulation and anticataleptic activity induced by the NMDA antagonist dizocilpine.
        Naunyn Schmiedebergs Arch Pharmacol. 1993; 348: 486-490
        • Homayoun H.
        • Jackson M.E.
        • Moghaddam B.
        Activation of metabotropic glutamate 2/3 receptors reverses the effects of NMDA receptor hypofunction on prefrontal cortex unit activity in awake rats.
        J Neurophysiol. 2005; 93: 1989-2001
        • Homayoun H.
        • Moghaddam B.
        Bursting of prefrontal cortex neurons in awake rats is regulated by metabotropic glutamate 5 (mGlu5) receptors: Rate-dependent influence and interaction with NMDA receptors.
        Cereb Cortex. 2006; 16: 93-105
        • Homayoun H.
        • Stefani M.R.
        • Adams B.W.
        • Tamagan G.D.
        • Moghaddam B.
        Functional interaction between NMDA and mGlu5 receptors: Effects on working memory, instrumental learning, motor behaviors, and dopamine release.
        Neuropsychopharmacology. 2004; 29: 1259-1269
        • Honey G.D.
        • Honey R.A.
        • O’Loughlin C.
        • Sharar S.R.
        • Kumaran D.
        • Suckling J.
        • et al.
        Ketamine disrupts frontal and hippocampal contribution to encoding and retrieval of episodic memory: An fMRI study.
        Cereb Cortex. 2005; 15: 749-759
        • Hummer M.
        • Huber J.
        Hyperprolactinaemia and antipsychotic therapy in schizophrenia.
        Curr Med Res Opin. 2004; 20: 189-197
        • Jackson M.
        • Homayoun H.
        • Moghaddam B.
        NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex.
        Proc Natl Acad Sci U S A. 2004; 101: 6391-6396
        • Javitt D.C.
        Glycine modulators in schizophrenia.
        Curr Opin Investig Drugs. 2002; 3: 1067-1072
        • Javitt D.C.
        • Zukin S.R.
        Recent advances in the phencyclidine model of schizophrenia.
        Am J Psychiatry. 1991; 148: 1301-1308
        • Jentsch J.D.
        • Redmond Jr, D.E.
        • Elsworth J.D.
        • Taylor J.R.
        • Youngren K.D.
        • Roth R.H.
        Enduring cognitive deficits and cortical dopamine dysfunction in monkeys after long-term administration of phencyclidine.
        Science. 1997; 277: 953-955
        • Jong Y.J.
        • Kumar V.
        • Kingston A.E.
        • Romano C.
        • O’Malley K.L.
        Functional metabotropic glutamate receptors on nuclei from brain and primary cultured striatal neurons.
        J Biol Chem. 2005; 280: 30469-30480
        • Kinney G.G.
        • O’Brien J.A.
        • Lemaire W.
        • Burno M.
        • Bickel D.J.
        • Clements M.K.
        • et al.
        A novel selective positive allosteric modulator of metabotropic glutamate receptor subtype 5 has in vivo activity and antipsychotic-like effects in rat behavioral models.
        J Pharmacol Exp Ther. 2005; 313: 199-206
        • Kinney G.
        • O’brien J.
        • Lemaire W.
        • Burno M.
        • Bickel D.
        • Clements M.
        • et al.
        A novel selective positive allosteric modulator of metabotropic glutamate receptor subtype 5 has in vivo activity and antipsychotic-like effects in rat behavioral models.
        J Pharmacol Exp Ther. 2005; 313: 199-206
        • Kristiansen L.V.
        • Beneyto M.
        • Haroutunian V.
        • Meador-Woodruff J.H.
        Changes in NMDA receptor subunits and interacting PSD proteins in dorsolateral prefrontal and anterior cingulate cortex indicate abnormal regional expression in schizophrenia.
        Mol Psychiatry. 2006; 11 (705): 737-747
        • Krystal J.H.
        • Bennett A.
        • Abi-Saab D.
        • Belger A.
        • Karper L.P.
        • D’Souza D.C.
        • et al.
        Dissociation of ketamine effects on rule acquisition and rule implementation: Possible relevance to NMDA receptor contributions to executive cognitive functions.
        Biol Psychiatry. 2000; 47: 137-143
        • Krystal J.H.
        • D’Souza D.C.
        • Mathalon D.
        • Perry E.
        • Belger A.
        • Hoffman R.
        NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: Toward a paradigm shift in medication development.
        Psychopharmacology (Berl). 2003; 169: 215-233
        • Krystal J.H.
        • Karper L.P.
        • Seibyl J.P.
        • Freeman G.K.
        • Delaney R.
        • Bremner J.D.
        • et al.
        Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: Psychotomimetic, perceptual, cognitive, and neuroendocrine responses.
        Arch Gen Psychiatry. 1994; 51: 199-214
        • Lahti A.C.
        • Holocomb H.H.
        • Medoff D.R.
        • Tammings C.A.
        Ketamine activates psychosis and alters limbic blood flow in schizophrenia.
        Neuroreport. 1995; 6: 869-872
        • Legendy C.R.
        • Salcman M.
        Bursts and recurrences of bursts in the spike trains of spontaneously active striate cortex neurons.
        J Neurophysiol. 1985; 53: 926-939
        • Lindsley C.W.
        • Wisnoski D.D.
        • Leister W.H.
        • O’Brien J.A.
        • Lemaire W.
        • Williams Jr, D.L.
        • et al.
        Discovery of positive allosteric modulators for the metabotropic glutamate receptor subtype 5 from a series of N-(1,3-diphenyl-1H- pyrazol-5-yl)benzamides that potentiate receptor function in vivo.
        J Med Chem. 2004; 47: 5825-5828
        • Liu F.
        • Zhang G.
        • Hornby G.
        • Vasylyev D.
        • Bowlby M.
        • Park K.
        • et al.
        The effect of mGlu5 receptor positive allosteric modulators on signaling molecules in brain slices.
        Eur J Pharmacol. 2006; 536: 262-268
        • Llorca P.M.
        • Chereau I.
        • Bayle F.J.
        • Lancon C.
        Tardive dyskinesias and antipsychotics: A review.
        Eur Psychiatry. 2002; 17: 129-138
        • Luby E.
        • Cohen B.
        • Rosenbaum G.
        • Gottlieb J.
        • Kelley R.
        Study of a new schizophrenomimetic drug-sernyl.
        Arch Neurol Psychiatry. 1959; 81: 363-369
        • Malhotra A.K.
        • Pinals D.A.
        • Adler C.M.
        • Elman I.
        • Clifton A.
        • Pickar D.
        • et al.
        Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics.
        Neuropsychopharmacology. 1997; 17: 141-150
        • Malhotra A.K.
        • Pinals D.A.
        • Weingartner H.
        • Sirocco K.
        • Missar C.D.
        • Pickar D.
        • et al.
        NMDA receptor function and human coginition: The effects of ketamine in healthy volunteers.
        Neuropsychopharmacology. 1996; 14: 301-307
        • Marino M.J.
        • Conn P.J.
        Direct and indirect modulation of the N-methyl D-aspartate receptor.
        Curr Drug Targets CNS Neurol Disord. 2002; 1: 1-16
        • Marino M.J.
        • Conn P.J.
        Glutamate-based therapeutic approaches: Allosteric modulators of metabotropic glutamate receptors.
        Curr Opin Pharmacol. 2006; 6: 98-102
        • Miyamoto S.
        • Duncan G.
        • Marx C.
        • Lieberman J.
        Treatments for schizophrenia: A critical review of pharmacology and mechanisms of action of antipsychotic drugs.
        Mol Psychiatry. 2005; 10: 79-104
        • Moghaddam B.
        Bringing order to the glutamate chaos in schizophrenia.
        Neuron. 2003; 40: 881-884
        • Moghaddam B.
        Targeting metabotropic glutamate receptors for treatment of the cognitive symptoms of schizophrenia.
        Psychopharmacology (Berl). 2004; 174: 39-44
        • Moghaddam B.
        • Adams B.
        • Verma A.
        • Daly D.
        Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex.
        J Neurosci. 1997; 17: 2921-2927
        • Newcomer J.W.
        • Farber N.B.
        • Jevtovic-Todorovic V.
        • Selke G.
        • Melson A.K.
        • Hershey T.
        • et al.
        Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis.
        Neuropsychopharmacology. 1999; 20: 106-118
        • O’Brien J.A.
        • Lemaire W.
        • Wittmann M.
        • Jacobson M.A.
        • Ha S.N.
        • Wisnoski D.D.
        • et al.
        A novel selective allosteric modulator potentiates the activity of native metabotropic glutamate receptor subtype 5 in rat forebrain.
        J Pharmacol Exp Ther. 2004; 309: 568-577
        • Olney J.
        • Farber N.
        Glutamate receptor dysfunction and schizophrenia.
        Arch Gen Psychiatry. 1995; 52: 998-1007
        • Olney J.W.
        Excitotoxic amino acids and neuropsychiatric disorders.
        Annu Rev Pharmacol Toxicol. 1990; 30: 47-71
        • O’Malley K.L.
        • Jong Y.J.
        • Gonchar Y.
        • Burkhalter A.
        • Romano C.
        Activation of metabotropic glutamate receptor mGlu5 on nuclear membranes mediates intranuclear Ca2+ changes in heterologous cell types and neurons.
        J Biol Chem. 2003; 278: 28210-28219
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotaxic Coordinates.
        Academic Press, San Diego1998
        • Pilowsky L.S.
        • Bressan R.A.
        • Stone J.M.
        • Erlandsson K.
        • Mulligan R.S.
        • Krystal J.H.
        • et al.
        First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients.
        Mol Psychiatry. 2006; 11: 118-119
        • Sathyaprakash R.
        • Henry R.R.
        Hyperglycemia with antipsychotic treatment.
        Curr Diab Rep. 2004; 4: 41-45
        • Schwartz T.L.
        • Nihalani N.
        • Virk S.
        • Jindal S.
        • Chilton M.
        Psychiatric medication-induced obesity: Treatment options.
        Obes Rev. 2004; 5: 233-238
        • Seeman P.
        Dopamine receptors and the dopamine hypothesis of schizophrenia.
        Synapse. 1987; 1: 133-152
        • Sharifullina E.
        • Ostroumov K.
        • Nistri A.
        Activation of group I metabotropic glutamate receptors enhances efficacy of glutamatergic inputs to neonatal rat hypoglossal motoneurons in vitro.
        Eur J Neurosci. 2004; 20: 1245-1254
        • Snyder S.
        • Banerjee S.
        • Yamamura H.
        Drugs, neurotransmitters and schizophrenia.
        Science. 1974; 184: 1243-1253
        • Spooren W.P.
        • Vassout A.
        • Neijt H.C.
        • Kuhn R.
        • Gasparini F.
        • Roux S.
        • et al.
        Anxiolytic-like effects of the prototypical metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine in rodents.
        J Pharmacol Exp Ther. 2000; 295: 1267-1275
        • Stefani M.R.
        • Groth K.
        • Moghaddam B.
        Glutamate receptors in the rat medial prefrontal cortex regulate set-shifting ability.
        Behav Neurosci. 2003; 117: 728-737
        • Stefani M.R.
        • Moghaddam B.
        Systemic and prefrontal cortical NMDA receptor blockade differentially affect discrimination learning and set-shift ability in rats.
        Behav Neurosci. 2005; 119: 420-428
        • Stoop R.
        • Conquet F.
        • Zuber B.
        • Voronin L.
        • Pralong E.
        Activation of metabotropic glutamate 5 and NMDA receptors underlies the induction of persistent bursting and associated long-lasting changes in CA3 recurrent connections.
        J Neurosci. 2003; 23: 5634-5644
        • Thierry A.M.
        • Tassin J.P.
        • Blanc G.
        • Glowinski J.
        Selective activation of mesocortical DA system by stress.
        Nature. 1976; 263: 242-244
        • Tsai G.
        • Yang P.
        • Chung L.
        • Lange N.
        • Coyle J.
        D-serine added to antipsychotics for the treatment of schizophrenia.
        Biol Psychiatry. 1998; 44: 1081-1089
        • Verma A.
        • Moghaddam B.
        NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: Modulation by dopamine.
        J Neurosci. 1996; 16 (373–279)
        • Wisniewski K.
        • Car H.
        (S)-3,5-DHPG: A review.
        CNS Drug Rev. 2002; 8: 101-116