Advertisement

Altered Hippocampal Muscarinic M4, but Not M1, Receptor Expression from Subjects with Schizophrenia

  • Elizabeth Scarr
    Correspondence
    Address reprint requests to Elizabeth Scarr, Ph.D., Rebecca L. Cooper Research Laboratories, The Mental Health Research Institute of Victoria, Locked Bag 11, Parkville, VIC 3052, Australia
    Affiliations
    Rebecca L. Cooper Research Laboratories, University of Melbourne, Parkville

    Mental Health Research Institute of Victoria, and the Centre for Neuroscience, University of Melbourne, Parkville
    Search for articles by this author
  • Suresh Sundram
    Affiliations
    Molecular Psychopharmacology Laboratory, University of Melbourne, Parkville

    Department of Psychiatry, University of Melbourne, Parkville

    Northern Psychiatry Research Centre, Epping, Australia.
    Search for articles by this author
  • Dahlia Keriakous
    Affiliations
    Rebecca L. Cooper Research Laboratories, University of Melbourne, Parkville
    Search for articles by this author
  • Brian Dean
    Affiliations
    Rebecca L. Cooper Research Laboratories, University of Melbourne, Parkville

    Department of Pathology, University of Melbourne, Parkville

    Department of Psychiatry, University of Melbourne, Parkville

    Department of Psychological Medicine, Monash University, Clayton
    Search for articles by this author

      Background

      Having shown a decrease in [3H]pirenzepine binding in the hippocampus from subjects with schizophrenia, we wished to determine whether such a change in radioligand binding was associated with changes in hippocampal mRNA for the muscarinic1 (M1) and muscarinic4 (M4) receptors in tissue from different cohorts of subjects.

      Method

      The [3H]pirenzepine binding using autoradiography and in situ hybridization with oligonucleotides specific for muscarinic M1 and M4 receptors were completed using hippocampal tissue obtained postmortem from 20 control subjects and 20 subjects with schizophrenia.

      Results

      The [3H]pirenzepine binding was decreased in the dentate gyrus (p < .05), CA3 (p < .01), CA2 (p < .05), and CA1 (p < .01) regions of the hippocampus from subjects with schizophrenia. Levels of M4 mRNA varied with the diagnosis of schizophrenia (p = .01), but significant region-specific changes were not apparent. Changes in levels of mRNA for the muscarinic M1 receptor were not detected with diagnosis.

      Conclusions

      This study suggests that decreases in hippocampal [3H]pirenzepine binding in subjects with schizophrenia are most likely associated with widespread changes in expression levels of the M4 receptor. These data further implicate the hippocampal formation in the pathology of schizophrenia.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Altschul S.F.
        • Madden T.L.
        • Schaffer A.A.
        • Zhang J.
        • Zhang Z.
        • Miller W.
        • et al.
        Gapped BLAST and PSI-BLAST: A new generation of protein database search programs.
        Nucleic Acids Res. 1997; 25: 3389-3402
        • Ashby Jr, C.R.
        • Wang R.Y.
        Pharmacological actions of the atypical antipsychotic drug clozapine: A review.
        Synapse. 1996; 24: 349-394
        • Bennett Jr, J.P.
        • Enna S.J.
        • Bylund D.B.
        • Gillin J.C.
        • Wyatt R.J.
        • Snyder S.H.
        Neurotransmitter receptors in frontal cortex of schizophrenics.
        Arch Gen Psychiatry. 1979; 36: 927-934
        • Bird E.D.
        • Spokes E.G.
        • Barnes J.
        • MacKay A.V.
        • Iversen L.L.
        • Shepherd M.
        Increased brain dopamine and reduced glutamic acid decarboxylase and choline acetyl transferase activity in schizophrenia and related psychoses.
        Lancet. 1977; 2: 1157-1158
        • Breese C.R.
        • Lee M.J.
        • Adams C.E.
        • Sullivan B.
        • Logel J.
        • Gillen K.M.
        • et al.
        Abnormal regulation of high affinity nicotinic receptors in subjects with schizophrenia.
        Neuropsychopharmacology. 2000; 23: 351-364
        • Camps M.
        • Cortes R.
        • Gueye B.
        • Probst A.
        • Palacios J.M.
        Dopamine receptors in human brain: Autoradiographic distribution of D2 sites.
        Neuroscience. 1989; 28: 275-290
        • Cortes R.
        • Gueye B.
        • Pazos A.
        • Probst A.
        • Palacios J.M.
        Dopamine receptors in human brain: Autoradiographic distribution of D1 sites.
        Neuroscience. 1989; 28: 263-273
        • Crook J.M.
        • Dean B.
        • Pavey G.
        • Copolov D.
        The binding of [3H]AF-DX 384 is reduced in the caudate–putamen of subjects with schizophrenia.
        Life Sci. 1999; 64: 1761-1771
        • Crook J.M.
        • Tomaskovic-Crook E.
        • Copolov D.L.
        • Dean B.
        Decreased muscarinic receptor binding in subjects with schizophrenia: A study of the human hippocampal formation.
        Biol Psychiatry. 2000; 48: 381-388
        • Crook J.M.
        • Tomaskovic-Crook E.
        • Copolov D.L.
        • Dean B.
        Low muscarinic receptor binding in prefrontal cortex from subjects with schizophrenia: A study of Brodmann’s areas 8, 9, 10, and 46 and the effects of neuroleptic drug treatment.
        Am J Psychiatry. 2001; 158: 918-925
        • Dean B.
        • Crook J.M.
        • Opeskin K.
        • Hill C.
        • Keks N.
        • Copolov D.L.
        The density of muscarinic M1 receptors is decreased in the caudate–putamen of subjects with schizophrenia.
        Mol Psychiatry. 1996; 1: 54-58
        • Dean B.
        • Gray L.
        • Keriakous D.
        • Scarr E.
        A comparison of M1 and M4 muscarinic receptors in the thalamus from control subjects and subjects with schizophrenia.
        Thalamus Related Systems. 2004; 2: 287-295
        • Dean B.
        • McLeod M.
        • Keriakous D.
        • McKenzie J.
        • Scarr E.
        Decreased muscarinic(1) receptors in the dorsolateral prefrontal cortex of subjects with schizophrenia.
        Mol Psychiatry. 2002; 7: 1083-1091
        • Domino E.F.
        • Krause R.R.
        • Bowers J.
        Various enzymes involved with putative neurotransmitters.
        Arch Gen Psychiatry. 1973; 29: 195-201
        • Falk L.
        • Nordberg A.
        • Seiger A.
        • Kjaeldgaard A.
        • Hellstrom-Lindahl E.
        Smoking during early pregnancy affects the expression pattern of both nicotinic and muscarinic acetylcholine receptors in human first trimester brainstem and cerebellum.
        Neuroscience. 2005; 132: 389-397
        • Fuller R.L.
        • Luck S.J.
        • McMahon R.P.
        • Gold J.M.
        Working memory consolidation is abnormally slow in schizophrenia.
        J Abnorm Psychol. 2005; 114: 279-290
        • Hill C.
        • Keks N.
        • Roberts S.
        • Opeskin K.
        • Dean B.
        • Copolov D.
        Diagnostic Instrument for Brain Studies. Mental Health Research Institute, Melbourne, Australia1999
        • Johnston D.
        • Amaral D.G.(
        Hippocampus.
        in: Shepherd G.M. The Synaptic Organization of the Brain. 4th ed. Oxford University Press, New York1998: 417-458
        • Kingsbury A.E.
        • Foster O.J.
        • Nisbet A.P.
        • Cairns N.
        • Bray L.
        • Eve D.J.
        • et al.
        Tissue pH as an indicator of mRNA preservation in human post-mortem brain.
        Brain Res Mol Brain Res. 1995; 28: 311-318
        • Lahti R.A.
        • Roberts R.C.
        • Cochrane E.V.
        • Primus R.J.
        • Gallager D.W.
        • Conley R.R.
        • et al.
        Direct determination of dopamine D4 receptors in normal and schizophrenic postmortem brain tissue: A [3H]NGD-94-1 study.
        Mol Psychiatry. 1998; 3: 528-533
        • Levey A.I.
        Muscarinic acetylcholine receptor expression in memory circuits: Implications for treatment of Alzheimer disease.
        Proc Natl Acad Sci U S A. 1996; 93: 13541-13546
        • Loiacono R.E.
        • Gruundlach A.L.
        In situ hybridisation histochemistry: Application to human brain tissue.
        in: Dean B. Kleinman J.E. Hyde T.M. Using CNS Tissue in Psychiatric Research: A Practical Guide. Harwood Academic, Sydney1999: 85-106
        • Mai J.K.
        • Assheuer J.
        • Paxinos G.
        Atlas of the Human Brain. Academic Press, San Diego, CA1997
        • Mancama D.
        • Arranz M.J.
        • Landau S.
        • Kerwin R.
        Reduced expression of the muscarinic 1 receptor cortical subtype in schizophrenia.
        Am J Med Genet B Neuropsychiatr Genet. 2003; 119: 2-6
        • McGeer P.L.
        • McGeer E.G.
        Possible changes in striatal and limbic cholinergic systems in schizophrenia.
        Arch Gen Psychiatry. 1977; 34: 1319-1323
        • Mishima K.
        • Iwasaki K.
        • Tsukikawa H.
        • Matsumoto Y.
        • Egashira N.
        • Abe K.
        • et al.
        The scopolamine-induced impairment of spatial cognition parallels the acetylcholine release in the ventral hippocampus in rats.
        Jpn J Pharmacol. 2000; 84: 163-173
        • Moriya H.
        • Takagi Y.
        • Nakanishi T.
        • Hayashi M.
        • Tani T.
        • Hirotsu I.
        Affinity profiles of various muscarinic antagonists for cloned human muscarinic acetylcholine receptor (mAChR) subtypes and mAChRs in rat heart and submandibular gland.
        Life Sci. 1999; 64: 2351-2358
        • Oades R.D.
        • Halliday G.M.
        Ventral tegmental (A10) system: Neurobiology.
        Brain Res. 1987; 434: 117-165
        • Pantelis C.
        • Velakoulis D.
        • McGorry P.D.
        • Wood S.J.
        • Suckling J.
        • Phillips L.J.
        • et al.
        Neuroanatomical abnormalities before and after onset of psychosis: A cross-sectional and longitudinal MRI comparison.
        Lancet. 2003; 361: 281-288
        • Perry E.K.
        • Perry R.H.
        The cholinergic system in Alzheimer’s disease.
        in: Roberts P.J. Biochemistry of Dementia. Wiley, Chichester, United Kingdom1980: 153
        • Perry E.K.
        • Perry R.H.
        • Blessed G.
        • Tomlinson B.E.
        Changes in brain cholinesterases in senile dementia of Alzheimer type.
        Neuropathol Appl Neurobiol. 1978; 4: 273-277
        • Port R.L.
        • Seybold K.S.
        Hippocampal synaptic plasticity as a biological substrate underlying episodic psychosis.
        Biol Psychiatry. 1995; 37: 318-324
        • Power A.E.
        • Vazdarjanova A.
        • McGaugh J.L.
        Muscarinic cholinergic influences in memory consolidation.
        Neurobiol Learn Mem. 2003; 80: 178-193
        • Raedler T.J.
        • Knable M.B.
        • Jones D.W.
        • Urbina R.A.
        • Gorey J.G.
        • Lee K.S.
        • et al.
        In vivo determination of muscarinic acetylcholine receptor availability in schizophrenia.
        Am J Psychiatry. 2003; 160: 118-127
        • Remington G.J.
        Antipsychotics (neuroleptics).
        in: Bezchlibnyk-Butler K.Z. Jeffries J.J. Clinical Handbook of Psychotropic drugs. 9th ed. Hogrefe & Huber, Seattle, WA1999: 55-84
        • Rodbard D.
        Mathematics and statistics of ligand assays.
        in: Langan J. Clapp J.J. Ligand Assay: Analysis of International Developments on Isotopic and Nonisotopic Immunoassay. Masson, New York1981: 55-101
        • Rouse S.T.
        • Marino M.J.
        • Potter L.T.
        • Conn P.J.
        • Levey A.I.
        Muscarinic receptor subtypes involved in hippocampal circuits.
        Life Sci. 1999; 64: 501-509
        • Scarr E.
        • Gray L.
        • Keriakous D.
        • Robinson P.J.
        • Dean B.
        Increased levels of SNAP-25 and synaptophysin in the dorsolateral prefrontal cortex in bipolar 1 disorder.
        Bipolar Disord. 2006; 8: 133-143
        • Tzavara E.T.
        • Bymaster F.P.
        • Davis R.J.
        • Wade M.R.
        • Perry K.W.
        • Wess J.
        • et al.
        M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: Relevance to the pathophysiology and treatment of related CNS pathologies.
        FASEB J. 2004; 18: 1410-1412
        • Tzavara E.T.
        • Bymaster F.P.
        • Felder C.C.
        • Wade M.
        • Gomeza J.
        • Wess J.
        • et al.
        Dysregulated hippocampal acetylcholine neurotransmission and impaired cognition in M2, M4 and M2/M4 muscarinic receptor knockout mice.
        Mol Psychiatry. 2003; 8: 673-679
        • Van der Zee E.A.
        • Luiten P.G.
        GABAergic neurons of the rat dorsal hippocampus express muscarinic acetylcholine receptors.
        Brain Res Bull. 1993; 32: 601-609
        • Watanabe S.
        • Nishikawa T.
        • Takashima M.
        • Toru M.
        Increased muscarinic cholinergic receptors in prefrontal cortices of medicated schizophrenics.
        Life Sci. 1983; 33: 2187-2196
        • Zavitsanou K.
        • Katsifis A.
        • Mattner F.
        • Xu-Feng H.
        Investigation of m1/m4 muscarinic receptors in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression disorder.
        Neuropsychopharmacology. 2004; 29: 619-625