Advertisement
Brief Report| Volume 62, ISSUE 4, P359-362, August 15, 2007

TIMP-1 Abolishes MMP-9-Dependent Long-lasting Long-term Potentiation in the Prefrontal Cortex

      Background

      Understanding of the molecular mechanisms of prefrontal cortex (PFC) plasticity is important for developing new treatment strategies for mental disorders such as depression and schizophrenia. Long-term potentiation (LTP) is a valid model for synaptic plasticity. The extracellular proteolytic system composed of matrix metalloproteinases (MMPs) and their endogenous tissue inhibitors (TIMPs) has recently been shown to play major role in the hippocampal plasticity.

      Methods

      We tested whether induction of hippocampal-prefrontal LTP results in accumulation of tissue inhibitor of MMP-1, TIMP-1 mRNA, in the PFC of rats and whether adenovirally driven overexpression of TIMP-1 affects LTP. Additional study of slices was done with a specific MMP-9 inhibitor.

      Results

      The TIMP-1 is induced in the rat medial PFC by stimuli evoking late LTP; its overexpression blocks the gelatinolytic activity of the MMP family; its overexpression before tetanization blocks late LTP in vivo; and MMP-9 inhibitor prevents late LTP in vitro.

      Conclusions

      We suggest a novel extracellular mechanism of late LTP in the PFC, engaging TIMP-1-controlled proteolysis as an element of information integration. Our results may also be meaningful to an understanding of mental diseases and development of new treatment strategies that are based on extracellular mechanisms of synaptic plasticity.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Akil M.
        • Pierri J.N.
        • Whitehead R.E.
        • Edgar C.L.
        • Mohila C.
        • Sampson A.R.
        Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects.
        Am J Psychiatry. 1999; 156: 1580-1589
        • Brew K.
        • Dinakarpandian D.
        • Nagase H.
        Tissue inhibitors of metalloproteinases: Evolution, structure and function.
        Biochim Biophys Acta. 2000; 1477: 267-283
        • Dzwonek J.
        • Rylski M.
        • Kaczmarek L.
        Matrix metalloproteinases and their endogenous inhibitors in neuronal physiology of the adult brain.
        FEBS Lett. 2004; 567: 129-135
        • Egan M.F.
        • Weinberger D.R.
        Neurobiology of schizophrenia.
        Curr Opin Neurobiol. 1997; 7: 701-707
        • George S.J.
        • Johnson J.L.
        • Angelini G.D.
        • Newby A.C.
        • Baker A.H.
        Adenovirus-mediated gene transfer of the human TIMP-1 gene inhibits smooth muscle cell migration and neointimal formation in human saphenous vein.
        Hum Gene Ther. 1998; 9: 867-877
        • Giannelli G.
        • Antonaci S.
        Gelatinases and their inhibitors in tumor metastasis: From biological research to medical applications.
        Histol Histopathol. 2002; 17: 339-345
        • Huang Y.Y.
        • Simpson E.
        • Kellendonk C.
        • Kandel E.R.
        Genetic evidence for the bidirectional modulation of synaptic plasticity in the prefrontal cortex by D1 receptors.
        Proc Natl Acad Sci. 2004; 101: 3236-3241
        • Jaworski J.
        • Biedermann I.W.
        • Lapinska J.
        • Szklarczyk A.
        • Figiel I.
        • Konopka D.
        • et al.
        Neuronal excitation-driven and AP-1-dependent activation of tissue inhibitor of metalloproteinases-1 gene expression in rodent hippocampus.
        J Biol Chem. 1999; 274: 28106-28112
        • Jay T.M.
        • Burette F.
        • Laroche S.
        Plasticity of the hippocampal–prefrontal cortex synapses.
        J Physiol Paris. 1996; 90: 361-366
        • Jay T.M.
        • Glowinski J.
        • Thierry A.M.
        Inhibition of hippocampoprefrontal cortex excitatory responses by the mesocortical DA system.
        Neuroreport. 1995; 14: 1845-1848
        • Jay T.M.
        • Thierry A.M.
        • Wiklund L.
        • Glowinski J.
        Excitatory amino acid pathway from the hippocampus to the prefrontal cortex.
        Eur J Neurosci. 1992; 12: 1285-1295
        • Jourquin J.
        • Tremblay E.
        • Decanis N.
        • Charton G.
        • Hanessian S.
        • Chollet A.M.
        • et al.
        Neuronal activity-dependent increase of net matrix metalloproteinase activity is associated with MMP-9 neurotoxicity after kainate.
        Eur J Neurosci. 2003; 18: 1507-1517
        • Kaczmarek L.
        • Lapinska-Dzwonek J.
        • Szymczak S.
        Matrix metalloproteinases in the adult brain physiology: A link between c-Fos, AP-1 and remodeling of neuronal connections?.
        EMBO J. 2002; 21: 6643-6648
        • Kalia M.
        Neurobiological basis of depression: An update.
        Metabolism. 2005; 54: 24-27
        • Miller E.K.
        • Freedman D.J.
        • Wallis J.D.
        The prefrontal cortex: Categories, concepts and cognition.
        Philos Trans R Soc Lond B Biol Sci. 2002; 357: 1123-1136
        • Nagy V.
        • Bozdagi O.
        • Matynia A.
        • Balcerzyk M.
        • Okulski P.
        • Dzwonek J.
        • et al.
        Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory.
        J Neurosci. 2006; 26: 1923-1934
        • Nedivi E.
        • Hevroni D.
        • Naot D.
        • Israeli D.
        • Citri Y.
        Numerous candidate plasticity-related genes revealed by differential cDNA cloning.
        Nature. 1993; 363: 718-722
        • Okulski P.
        • Hess G.
        • Kaczmarek L.
        Anisomycin treatment paradigm affects duration of long-term potentiation in slices of the amygdala.
        Neuroscience. 2002; 114: 1-5
        • Reeves T.M.
        • Prins M.L.
        • Zhu J.
        • Povlishock J.T.
        • Phillips L.L.
        Matrix metalloproteinase inhibition alters functional and structural correlates of deafferentation-induced sprouting in the dentate gyrus.
        J Neurosci. 2003; 23: 10182-10189
        • Rocher C.
        • Spedding M.
        • Munoz C.
        • Jay T.M.
        Acute stress-induced changes in hippocampal/prefrontal circuits in rats: Effects of antidepressants.
        Cereb Cortex. 2004; 14: 224-229
        • Shiosaka S.
        Serine proteases regulating synaptic plasticity.
        Anat Sci Int. 2004; 79: 137-144
        • Szklarczyk A.
        • Lapinska J.
        • Rylski M.
        • McKay R.D.
        • Kaczmarek L.
        Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus.
        J Neurosci. 2002; 22: 920-930
        • Vaillant C.
        • Didier-Bazes M.
        • Hutter A.
        • Belin M.F.
        • Thomasset N.
        Spatiotemporal expression patterns of metalloproteinases and their inhibitors in the postnatal developing rat cerebellum.
        J Neurosci. 1999; 19: 4994-5004
        • Verwer R.W.
        • Meijer R.J.
        • Van Uum H.F.
        • Witter M.P.
        Collateral projections from the rat hippocampal formation to the lateral and medial prefrontal cortex.
        Hippocampus. 1997; 7: 397-402
        • Yong V.W.
        Metalloproteinases: Mediators of pathology and regeneration in the CNS.
        Nat Rev Neurosci. 2005; 6: 931-944