Advertisement

X-Monosomy Effects on Visuospatial Attention in Mice: A Candidate Gene and Implications for Turner Syndrome and Attention Deficit Hyperactivity Disorder

  • William Davies
    Affiliations
    Laboratories of Cognitive and Behavioral Neuroscience and Developmental Genetics and Imprinting, The Babraham Institute, Babraham Research Campus, Babraham, United Kingdom
    Search for articles by this author
  • Trevor Humby
    Affiliations
    Laboratories of Cognitive and Behavioral Neuroscience and Developmental Genetics and Imprinting, The Babraham Institute, Babraham Research Campus, Babraham, United Kingdom
    Search for articles by this author
  • Anthony R. Isles
    Affiliations
    Laboratories of Cognitive and Behavioral Neuroscience and Developmental Genetics and Imprinting, The Babraham Institute, Babraham Research Campus, Babraham, United Kingdom

    Developmental Psychiatry Section, University of Cambridge, Cambridge, United Kingdom
    Search for articles by this author
  • Paul S. Burgoyne
    Affiliations
    Division of Stem Cell Biology and Developmental Genetics, National Institute for Medical Research, London, United Kingdom.
    Search for articles by this author
  • Lawrence S. Wilkinson
    Correspondence
    Address reprint requests to Lawrence S. Wilkinson, Ph.D., Behavioral Genetics Group, Departments of Psychology and Psychological Medicine, University of Cardiff, Cardiff CF10 3XQ, United Kingdom
    Affiliations
    Laboratories of Cognitive and Behavioral Neuroscience and Developmental Genetics and Imprinting, The Babraham Institute, Babraham Research Campus, Babraham, United Kingdom
    Search for articles by this author
Published:December 11, 2006DOI:https://doi.org/10.1016/j.biopsych.2006.08.011

      Background

      The loss of all, or part of an X chromosome, in Turner syndrome (TS, 45,XO) results in deficits in attentional functioning.

      Methods

      Using a 39,XO mouse model, we tested the hypothesis that X-monosomy and/or parental origin of the single X chromosome may influence visuospatial attentional functioning in a 5-choice serial reaction time task (5-CSRTT).

      Results

      Under attentionally demanding conditions 39,XO mice displayed impaired discriminative response accuracy and slowed correct reaction times relative to 40,XX mice; these deficits were alleviated in a version of the task with reduced attentional demands. Parental origin of the X did not affect performance of the 5-CSRTT. In contrast, the attentional phenotype was rescued in 40,XY*X mice possessing a single maternally inherited X chromosome and a small Y*X chromosome that comprises a complete pseudoautosomal region (PAR), and a small X-specific segment.

      Conclusions

      Our findings are consistent with an X-monosomy effect on attention and suggest the existence of X-linked gene(s) that escape X-inactivation, are present on the small Y*X chromosome and impact on attentional functioning; the strongest candidate gene is Sts, encoding steroid sulfatase. The data inform the TS literature and indicate novel genetic mechanisms that may be of general significance to the neurobiology of attention.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Brown C.J.
        • Greally J.M.
        A stain upon the silence: Genes escaping X inactivation.
        Trends Genet. 2003; 19: 432-438
        • Brown V.J.
        • Bowman E.M.
        Rodent models of prefrontal cortical function.
        Trends Neurosci. 2002; 25: 340-343
        • Burgoyne P.S.
        • Evans E.P.
        A high frequency of XO offspring from X(Paf)Y* male mice: Evidence that the Paf mutation involves an inversion spanning the X PAR boundary.
        Cytogenet Cell Genet. 2000; 91: 57-61
        • Burgoyne P.S.
        • Mahadevaiah S.K.
        • Perry J.
        • Palmer S.J.
        • Ashworth A.
        The Y* rearrangement in mice: New insights into a perplexing PAR.
        Cytogenet Cell Genet. 1998; 80: 37-40
        • Carrel L.
        • Willard H.F.
        X-inactivation profile reveals extensive variability in X-linked gene expression in females.
        Nature. 2005; 434: 400-404
        • Cochran W.G.
        • Cox G.M.
        Experimental Designs. 2nd ed. Wiley, New York1957
        • Compagnone N.A.
        • Salido E.
        • Shapiro L.J.
        • Mellon S.H.
        Expression of steroid sulfatase during embryogenesis.
        Endocrinology. 1997; 138: 4768-4773
        • Cormier T.A.
        • Prakash S.K.
        • Magner D.B.
        • Zoghbi H.Y.
        • Van den Veyver I.B.
        Analysis of Mid1, Hccs, Arhgap6, and Msl3l1 in X-linked polydactyly (Xpl) and Patchy-fur (Paf) mutant mice.
        Mamm Genome. 2001; 12: 796-798
        • Dal Zotto L.
        • Quaderi N.A.
        • Elliott R.
        • Lingerfelter P.A.
        • Carrel L.
        • Valsecchi V.
        • et al.
        The mouse Mid1 gene: implications for the pathogenesis of Opitz syndrome and the evolution of the mammalian pseudoautosomal region.
        Hum Mol Genet. 1998; 7: 489-499
        • Davies W.
        • Isles A.
        • Smith R.
        • Karunadasa D.
        • Burrmann D.
        • Humby T.
        • et al.
        Xlr3b is a new imprinted candidate for X-linked parent-of-origin effects on cognitive function in mice.
        Nat Genet. 2005; 37: 625-629
        • Dmitrieva T.N.
        • Oades R.D.
        • Hauffa B.P.
        • Eggers C.
        Dehydroepiandrosterone sulphate and corticotropin levels are high in young male patients with conduct disorder: comparisons for growth factors, thyroid and gonadal hormones.
        Neuropsychobiology. 2001; 43: 134-140
        • Doherty M.J.
        • Glass I.A.
        • Bennett C.L.
        • Cotter P.D.
        • Watson N.F.
        • Mitchell A.L.
        • et al.
        An Xp; Yq translocation causing a novel contiguous gene syndrome in brothers with generalized epilepsy, Ichthyosis, and attention deficits.
        Epilepsia. 2003; 44: 1529-1535
        • Evans E.P.
        • Phillips R.J.
        Inversion heterozygosity and the origin of XO daughters of Bpa/+female mice.
        Nature. 1975; 256: 40-41
        • Fisher S.E.
        • Francks C.
        • McCracken J.T.
        • McGough J.J.
        • Marlow A.J.
        • MacPhie I.L.
        • et al.
        A genomewide scan for loci involved in attention-deficit/hyperactivity disorder.
        Am J Hum Genet. 2002; 70: 1183-1196
        • Ford C.E.
        Micklem H.S. Loutit J.F. Tissue grafting and radiation. Academic Press, New York1966: 197-206
        • Haberecht M.F.
        • Menon V.
        • Warsofsky I.S.
        • White C.D.
        • Dyer-Friedman J.
        • Glover G.H.
        • et al.
        Functional neuroanatomy of visuo-spatial working memory in Turner syndrome.
        Hum Brain Mapp. 2001; 14: 96-107
        • Henn W.
        • Zang K.D.
        Mosaicism in Turner’s syndrome.
        Nature. 1997; 390: 569
        • Humby T.
        • Laird F.M.
        • Davies W.
        • Wilkinson L.S.
        Visuospatial attentional functioning in mice: Interactions between cholinergic manipulations and genotype.
        Eur J Neurosci. 1999; 11: 2813-2823
        • Isles A.R.
        • Davies W.
        • Burrmann D.
        • Burgoyne P.S.
        • Wilkinson L.S.
        Effects on fear reactivity in XO mice are due to haploinsufficiency of a nonPAR X gene: Implications for emotional function in Turner’s syndrome.
        Hum Mol Genet. 2004; 13: 1849-1855
        • Isles A.R.
        • Humby T.
        • Wilkinson L.S.
        Measuring impulsivity in mice using a novel operant delayed reinforcement task: Effects of behavioral manipulations and d-amphetamine.
        Psychopharmacology (Berl). 2003; 170: 376-382
        • Korobova O.
        • Lane P.W.
        • Perry J.
        • Palmer S.
        • Ashworth A.
        • Davisson M.T.
        • Arnheim N.
        Patchy fur, a mouse coat mutation associated with X-Y nondisjunction, maps to the pseudoautosomal boundary region.
        Genomics. 1998; 54: 556-559
        • Laval S.H.
        • Reed V.
        • Blair H.J.
        • Boyd Y.
        The structure of DXF34, a human X-linked sequence family with homology to a transcribed mouse Y-linked repeat.
        Mamm Genome. 1997; 8: 689-691
        • Li X.M.
        • Alperin E.S.
        • Salido E.
        • Gong Y.
        • Yen P.
        • Shapiro L.J.
        Characterization of the promoter region of human steroid sulfatase: A gene which escapes X inactivation.
        Somat Cell Mol Genet. 1996; 22: 105-117
        • Lyon M.F.
        X-chromosome inactivation.
        Curr Biol. 1999; 9: R235-R237
        • McCauley E.
        • Feuillan P.
        • Kushner H.
        • Ross J.L.
        Psychosocial development in adolescents with Turner syndrome.
        J Dev Behav Pediatr. 2001; 22: 360-365
        • Muir J.L.
        • Everitt B.J.
        • Robbins T.W.
        The cerebral cortex of the rat and visual attentional function: Dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time task.
        Cereb Cortex. 1996; 6: 470-481
        • Nijhuis-van der Sanden M.W.
        • Eling P.A.
        • Otten B.J.
        A review of neuropsychological and motor studies in Turner Syndrome.
        Neurosci Biobehav Rev. 2003; 27: 329-338
        • Raefski A.S.
        • O’Neill M.J.
        Identification of a cluster of X-linked imprinted genes in mice.
        Nat Genet. 2005; 37: 620-624
        • Rhee S.H.
        • Waldman I.D.
        Etiology of sex differences in the prevalence of ADHD: an examination of inattention and hyperactivity-impulsivity.
        Am J Med Genet B Neuropsychiatr Genet. 2004; 127: 60-64
        • Robbins T.W.
        The 5-choice serial reaction time task: behavioral pharmacology and functional neurochemistry.
        Psychopharmacology (Berl). 2002; 163: 362-380
        • Romans S.M.
        • Roeltgen D.P.
        • Kushner H.
        • Ross J.L.
        Executive function in girls with Turner’s syndrome.
        Developmental Neuropsychology. 1997; 13: 23-40
        • Ross J.L.
        • Stefanatos G.
        • Roeltgen D.
        • Kushner H.
        • Cutler Jr, G.B.
        Ullrich-Turner syndrome: Neurodevelopmental changes from childhood through adolescence.
        Am J Med Genet. 1995; 58: 74-82
        • Ross J.L.
        • Stefanatos G.A.
        • Kushner H.
        • Zinn A.
        • Bondy C.
        • Roeltgen D.
        Persistent cognitive deficits in adult women with Turner syndrome.
        Neurology. 2002; 58: 218-225
        • Rovet J.
        • Ireland L.
        Behavioral phenotype in children with Turner syndrome.
        J Pediatr Psychol. 1994; 19: 779-790
        • Russell H.F.
        • Wallis D.
        • Mazzocco M.M.
        • Moshang T.
        • Zackai E.
        • Zinn A.R.
        • et al.
        Increased prevalence of ADHD in Turner syndrome with no evidence of imprinting effects.
        J Pediatr Psychol. 2006; 31: 945-955
        • Salido E.C.
        • Li X.M.
        • Yen P.H.
        • Martin N.
        • Mohandas T.K.
        • Shapiro L.J.
        Cloning and expression of the mouse pseudoautosomal steroid sulphatase gene (Sts).
        Nat Genet. 1996; 13: 83-86
        • Shaffer J.
        A specific cognitive deficit observed in gonadal aplasia Turner’s syndrome.
        J Clin Psychology. 1962; 18: 403-406
        • Strous R.D.
        • Spivak B.
        • Yoran-Hegesh R.
        • Maayan R.
        • Averbuch E.
        • Kotler M.
        • et al.
        Analysis of neurosteroid levels in attention deficit hyperactivity disorder.
        Int J Neuropsychopharmacol. 2001; 4: 259-264
        • Temple C.M.
        • Carney R.A.
        • Mullarkey S.
        Frontal lobe function and executive skills in children with Turner’s syndrome.
        Dev Neuropsychol. 1996; 12: 343-363
        • Tobias E.S.
        • Bryce G.
        • Farmer G.
        • Barton J.
        • Colgan J.
        • Morrison N.
        • et al.
        Absence of learning difficulties in a hyperactive boy with a terminal Xp deletion encompassing the MRX49 locus.
        J Med Genet. 2001; 38: 466-470
        • Uematsu A.
        • Yorifuji T.
        • Muroi J.
        • Kawai M.
        • Mamada M.
        • Kaji M.
        • et al.
        Parental origin of normal X chromosomes in Turner syndrome patients with various karyotypes: Implications for the mechanism leading to generation of a 45,X karyotype.
        Am J Med Genet. 2002; 111: 134-139
        • Williams J.
        • Richman L.
        • Yarbrough D.
        A comparison of memory and attention in Turner syndrome and learning disability.
        J Pediatr Psychol. 1991; 16: 585-593
        • Yeo R.A.
        • Hill D.E.
        • Campbell R.A.
        • Vigil J.
        • Petropoulos H.
        • Hart B.
        • et al.
        Proton magnetic resonance spectroscopy investigation of the right frontal lobe in children with attention-deficit/hyperactivity disorder.
        J Am Acad Child Adolesc Psychiatry. 2003; 42: 303-310
        • Zinn A.R.
        • Ross J.L.
        Turner syndrome and haploinsufficiency.
        Curr Opin Genet Dev. 1998; 8: 322-327