Advertisement
Original article| Volume 61, ISSUE 9, P1049-1061, May 01, 2007

Download started.

Ok

The Striatal-Enriched Protein Tyrosine Phosphatase Gates Long-Term Potentiation and Fear Memory in the Lateral Amygdala

Published:November 03, 2006DOI:https://doi.org/10.1016/j.biopsych.2006.08.005

      Background

      Formation of long-term memories is critically dependent on extracellular-regulated kinase (ERK) signaling. Activation of the ERK pathway by the sequential recruitment of mitogen-activated protein kinases is well understood. In contrast, the proteins that inactivate this pathway are not as well characterized.

      Methods

      Here we tested the hypothesis that the brain-specific striatal-enriched protein tyrosine phosphatase (STEP) plays a key role in neuroplasticity and fear memory formation by its ability to regulate ERK1/2 activation.

      Results

      STEP co-localizes with the ERKs within neurons of the lateral amygdala. A substrate-trapping STEP protein binds to the ERKs and prevents their nuclear translocation after glutamate stimulation in primary cell cultures. Administration of TAT-STEP into the lateral amygdala (LA) disrupts long-term potentiation (LTP) and selectively disrupts fear memory consolidation. Fear conditioning induces a biphasic activation of ERK1/2 in the LA with an initial activation within 5 minutes of training, a return to baseline levels by 15 minutes, and an increase again at 1 hour. In addition, fear conditioning results in the de novo translation of STEP. Inhibitors of ERK1/2 activation or of protein translation block the synthesis of STEP within the LA after fear conditioning.

      Conclusions

      Together, these data imply a role for STEP in experience-dependent plasticity and suggest that STEP modulates the activation of ERK1/2 during amygdala-dependent memory formation. The regulation of emotional memory by modulating STEP activity may represent a target for the treatment of psychiatric disorders such as posttraumatic stress disorder (PTSD), panic, and anxiety disorders.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aarts M.
        • Liu Y.
        • Liu L.
        • Besshoh S.
        • Arundine M.
        • Gurd J.W.
        • et al.
        Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions.
        Science. 2002; 29: 846-850
        • Bauer E.P.
        • Schafe G.E.
        • LeDoux J.E.
        NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala.
        J Neurosci. 2002; 22: 5239-5249
        • Berman D.E.
        • Hazvi S.
        • Rosenblum K.
        • Seger R.
        • Dudai Y.
        Specific and differential activation of mitogen-activated protein kinase cascades by unfamiliar taste in the insular cortex of the behaving rat.
        J Neurosci. 1998; 18: 10037-10044
        • Blair H.T.
        • Schafe G.E.
        • Bauer E.P.
        • Rodrigues S.M.
        • LeDoux J.E.
        Synaptic plasticity in the lateral amygdala: A cellular hypothesis of fear conditioning.
        Learn Mem. 2001; 8: 229-242
        • Blanco-Aparicio C.
        • Torres J.
        • Pulido R.
        A novel regulatory mechanism of MAP kinases activation and nuclear translocation mediated by PKA and the PTP-SL tyrosine phosphatase.
        J Cell Biol. 1999; 147: 1129-1136
        • Blum S.
        • Moore A.N.
        • Adams F.
        • Dash P.K.
        A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory.
        J Neurosci. 1999; 19: 3535-3544
        • Boulanger L.M.
        • Lombroso P.J.
        • Raghunathan A.
        • During M.J.
        • Wahle P.
        • Naegele J.R.
        Cellular and molecular characterization of a brain-enriched protein tyrosine phosphatase.
        J Neurosci. 1995; 15: 1532-1544
        • Braithwaite S.P.
        • Paul S.
        • Nairn A.C.
        • Lombroso P.J.
        Synaptic plasticity: One STEP at a time.
        Trends Neurosci. 2006; 29: 452-458
        • Bult A.
        • Zhao F.
        • Dirkx R.
        • Raghunathan A.
        • Solimena M.
        • Lombroso P.J.
        STEP: A family of brain enriched PTPs: Alternative splicing produces transmembrane, cytosolic and truncated isoforms.
        Eur J Cell Biol. 1997; 72: 337-344
        • Bult A.
        • Zhao F.
        • Dirkx R.
        • Sharma E.
        • Lukacsi E.
        • Solimena M.
        • et al.
        STEP61: A new member of a family of brain-enriched PTPs is localized to the ER.
        J Neurosci. 1996; 16: 7821-7831
        • Davis S.
        • Vanhoutte P.
        • Pages C.
        • Caboche J.
        • Laroche S.
        The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo.
        J Neurosci. 2000; 20: 4563-4572
        • English J.D.
        • Sweatt J.D.
        A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation.
        J Biol Chem. 1997; 272: 19103-19106
        • Flint A.
        • Tganis T.
        • Barford D.
        • Tonks N.
        Development of substrate trapping mutants to identify physiological substrates of PTPs.
        Proc Natl Acad Sci U S A. 1997; 94: 1680-1685
        • Frankel A.D.
        • Pabo C.O.
        Cellular uptake of the tat protein from human immunodeficiency virus.
        Cell. 1988; 55: 1189-1193
        • Green M.
        • Loewenstein P.M.
        Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein.
        Cell. 1988; 55: 1179-1188
        • Impey S.
        • Obrietan K.
        • Wong S.
        • Poser S.
        • Yano S.
        • Wayman G.
        • et al.
        Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation.
        Neuron. 1998; 21: 869-883
        • Impey S.
        • Smith D.M.
        • Obrietan K.
        • Donahue R.
        • Wade C.
        • Storm D.R.
        Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning.
        Nat Neurosci. 1998; 1: 595-601
        • Kelleher R.J.
        • Govindarajan A.
        • Jung H.Y.
        • Kang H.
        • Tonegawa S.
        Translational control by MAPK signaling in long-term synaptic plasticity and memory.
        Cell. 2004; 116: 467-479
        • Kelleher R.J.
        • Govindarajan A.
        • Tonegawa S.
        Translational regulatory mechanisms in persistent forms of synaptic plasticity.
        Neuron. 2004; 44: 59-73
        • Lamprecht R.
        • LeDoux J.
        Structural plasticity and memory.
        Nat Rev Neurosci. 2004; 5: 45-54
        • Lombroso P.J.
        • Naegele J.R.
        • Sharma E.
        • Lerner M.
        A protein tyrosine phosphatase expressed within dopaminoceptive neurons of the basal ganglia and related structures.
        J Neurosci. 1993; 13: 3064-3074
        • Morozov A.
        • Muzzio I.A.
        • Bourtchouladze R.
        • Van-Strien N.
        • Lapidus K.
        • Yin D.
        • et al.
        Rap1 couples cAMP signaling to a distinct pool of p42/44MAPK regulating excitability, synaptic plasticity, learning, and memory.
        Neuron. 2003; 39: 309-325
        • Murphy E.S.
        • Harding J.W.
        • Muhunthan K.
        • Holtfreter K.L.
        • Wright J.W.
        Role of mitogen-activated protein kinases during recovery from head-shake response habituation in rats.
        Brain Res. 2005; 1050: 170-179
        • Nader K.
        • Schafe G.E.
        • LeDoux J.E.
        Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval.
        Nature. 2000; 406: 722-726
        • Nguyen T.H.
        • Liu J.
        • Lombroso P.J.
        Striatal enriched phosphatase 61 (STEP61) dephosphorylates Fyn at phosphotyrosine 420.
        J Biol Chem. 2002; 277: 24274-24279
        • Oyama T.
        • Goto S.
        • Nishi T.
        • Sato K.
        • Yamada K.
        • Yoshikawa M.
        • et al.
        Immunocytochemical localization of the striatal enriched protein tyrosine phosphatase in the rat striatum: EM study.
        Neuroscience. 1995; 69: 869-880
        • Paul S.
        • Hisayuki Y.
        • Snider G.
        • Picciotto M.
        • Nairn A.
        • Lombroso P.J.
        Dopamine/D1 receptor mediates the phosphorylation and inactivation of the protein tyrosine phosphatase, STEP, through a PKA-mediated pathway.
        J Neurosci. 2000; 20: 5630-5638
        • Paul S.
        • Nairn A.
        • Wang P.
        • Lombroso P.J.
        NMDA-mediated activation of the protein tyrosine phosphatase, STEP, regulates the duration of ERK signaling.
        Nat Neurosci. 2003; 6: 34-42
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotaxic Coordinates. Academic Press, New York1986
        • Pelkey K.
        • Askalan R.
        • Paul S.
        • Kalia L.V.
        • Nguyen T.H.
        • Pitcher G.M.
        • et al.
        Tyrosine phosphatase STEP is a tonic brake on induction of long-term potentiation.
        Neuron. 2002; 34: 127-138
        • Pulido R.
        • Zuniga A.
        • Ulrich A.
        PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif.
        EMBO J. 1998; 17: 7337-7350
        • Rodrigues S.M.
        • Schafe G.E.
        • LeDoux J.E.
        Molecular mechanisms underlying emotional learning and memory in the lateral amygdala.
        Neuron. 2004; 44: 75-91
        • Saxena M.
        • Williams S.
        • Brockdorff J.
        • Gilman J.
        • Mustelin T.
        Inhibition of T cell signaling by mitogen-activated protein kinase-targeted hematopoietic tyrosine phosphatase (HePTP).
        J Biol Chem. 2000; 274: 11693-11700
        • Schafe G.E.
        • Atkins C.M.
        • Swank M.W.
        • Bauer E.P.
        • Sweatt J.D.
        • LeDoux J.E.
        Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of Pavlovian fear conditioning.
        J Neurosci. 2000; 2: 8177-8187
        • Schafe G.E.
        • LeDoux J.E.
        Memory consolidation of auditory Pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala.
        J Neurosci. 2000; 20: RC96
        • Selcher J.C.
        • Atkins C.M.
        • Trzaskos J.M.
        • Paylor R.
        • Sweatt J.D.
        A necessity for MAP kinase activation in mammalian spatial learning.
        Learn Mem. 1999; 6: 478-490
        • Sharma E.
        • Zhao F.
        • Bult A.
        • Lombroso P.J.
        Identification of two alternatively spliced transcripts of STEP: A subfamily of brain-enriched protein tyrosine phosphatases.
        Brain Res Mol Brain Res. 1995; 32: 87-93
        • Snyder E.M.
        • Nong Y.
        • Almeida C.G.
        • Paul S.
        • Moran T.
        • Choi E.Y.
        • et al.
        Regulation of NMDA receptor trafficking by amyloid-beta.
        Nat Neurosci. 2005; 8: 1051-1058
        • Swank M.W.
        • Sweatt J.D.
        Increased histone acetyltransferase and lysine acetyltransferase activity and biphasic activation of the ERK/RSK cascade in insular cortex during novel taste learning.
        J Neurosci. 2001; 21: 3383-3391
        • Sweatt J.D.
        Mitogen-activated protein kinases in synaptic plasticity and memory.
        Curr Opin Neurobiol. 2004; 14: 311-317
        • Takei N.
        • Kawamura M.
        • Hara K.
        • Yonezawa K.
        • Nawa H.
        Brain-derived neurotrophic factor enhances neuronal translation by activating multiple initiation processes: Comparison with the effects of insulin.
        J Biol Chem. 2001; 276: 42818-42825
        • Valjent E.
        • Pascoli V.
        • Svenningsson P.
        • Paul S.
        • Enslen H.
        • Corvol J.-C.
        • et al.
        Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum.
        Proc Natl Acad Sci U S A. 2005; 102: 491-496
        • Watanabe S.
        • Hoffman D.A.
        • Migliore M.
        • Johnston D.
        Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons.
        Proc Natl Acad Sci U S A. 2002; 99: 8366-8371
        • Weisskopf M.G.
        • Bauer E.P.
        • LeDoux J.E.
        L-type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala.
        J Neurosci. 1999; 19: 10512-10519
        • Winder D.G.
        • Martin K.C.
        • Muzzio I.A.
        • Rohrer D.
        • Chruscinski A.
        • Kobilka B.
        • et al.
        ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by beta-adrenergic receptors.
        Neuron. 1999; 24: 715-726
        • Wu S.P.
        • Lu K.T.
        • Chang W.C.
        • Gean P.W.
        Involvement of mitogen activated protein kinase in hippocampal long-term potentiation.
        J Biomed Sci. 1999; 6: 409-417
        • Yuan L.L.
        • Adams J.P.
        • Swank M.
        • Sweatt J.D.
        • Johnston D.
        Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway.
        J Neurosci. 2002; 22: 4860-4868