Advertisement
Original Article| Volume 62, ISSUE 3, P198-206, August 01, 2007

Inhibitory Control in High-Functioning Autism: Decreased Activation and Underconnectivity in Inhibition Networks

Published:November 30, 2006DOI:https://doi.org/10.1016/j.biopsych.2006.08.004

      Background

      Inhibiting prepotent responses is critical to optimal cognitive and behavioral function across many domains. Several behavioral studies have investigated response inhibition in autism, and the findings varied according to the components involved in inhibition. There has been only one published functional magnetic resonance imaging (fMRI) study so far on inhibition in autism, which found greater activation in participants with autism than control participants.

      Methods

      This study investigated the neural basis of response inhibition in 12 high-functioning adults with autism and 12 age- and intelligence quotient (IQ)-matched control participants during a simple response inhibition task and an inhibition task involving working memory.

      Results

      In both inhibition tasks, the participants with autism showed less brain activation than control participants in areas often found to be active in response inhibition tasks, namely the anterior cingulate cortex. In the more demanding inhibition condition, involving working memory, the participants with autism showed more activation than control participants in the premotor areas. In addition to the activation differences, the participants with autism showed lower levels of synchronization between the inhibition network (anterior cingulate gyrus, middle cingulate gyrus, and insula) and the right middle and inferior frontal and right inferior parietal regions.

      Conclusions

      The results indicate that the inhibition circuitry in the autism group is activated atypically and is less synchronized, leaving inhibition to be accomplished by strategic control rather than automatically. At the behavioral level, there was no difference between the groups.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abell F.
        • Krams M.
        • Ashburner J.
        • Passingham R.
        • Friston K.
        • Frackowiak R.
        • et al.
        The neuroanatomy of autism: A voxel-based whole brain analysis of structural scans.
        Neuroreport. 1999; 10: 1647-1651
        • Allman J.M.
        • Hakeem A.
        • Erwin J.M.
        • Nimchinsky E.
        • Hof P.
        The anterior cingulate cortex: The evolution of an interface between emotion and cognition.
        Ann N Y Acad Sci. 2001; 935: 107-117
        • Barch D.M.
        • Braver T.S.
        • Sabb F.W.
        • Noll D.C.
        Anterior cingulate and the monitoring of response conflict: Evidence from an fMRI study of overt verb generation.
        J Cogn Neurosci. 2000; 12: 298-309
        • Barnea-Goraly N.
        • Kwon H.
        • Menon V.
        • Eliez S.
        • Lotspeich L.
        • Reiss A.L.
        White matter structure in autism: Preliminary evidence from diffusion tensor imaging.
        Biol Psychiatry. 2004; 55: 323-326
        • Bauman M.L.
        • Kemper T.L.
        Neuroanatomic observations of the brain in autism.
        in: Bauman M.L. Kemper T.L. The Neurobiology of Autism. Johns Hopkins Press, Baltimore1994: 119-145
        • Bishop D.V.M.
        • Norbury C.F.
        Executive functions in children with communication impairments, in relation to autistic symptomatology 2: Response inhibition.
        Autism. 2005; 9: 29-43
        • Botvinick M.M.
        • Braver T.S.
        • Barch D.M.
        • Carter C.S.
        • Cohen J.D.
        Conflict monitoring and cognitive control.
        Psychol Rev. 2001; 108: 624-652
        • Botvinick M.M.
        • Cohen J.D.
        • Carter C.S.
        Conflict monitoring and anterior cingulate cortex: An update.
        Trends Cogn Sci. 2004; 8: 539-546
        • Botvinick M.M.
        • Nystrom L.E.
        • Fissell K.
        • Carter C.S.
        • Cohen J.D.
        Conflict monitoring versus selection-for-action in anterior cingulate cortex.
        Nature. 1999; 402: 179-181
        • Braver S.
        • Barch D.
        • Kelley W.
        • Buckner R.
        • Cohen N.
        • Miezin F.
        • et al.
        Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks.
        Neuroimage. 2001; 14: 48-59
        • Brian J.A.
        • Tipper S.P.
        • Weaver B.
        • Bryson S.E.
        Inhibitory mechanisms in autism spectrum disorders: Typical selective inhibition of location versus facilitated perceptual processing.
        J Child Psychol Psychiatry. 2003; 44: 552-560
        • Bush G.
        • Luu P.
        • Posner M.I.
        Cognitive and emotional influences in anterior cingulate cortex.
        Trends Cogn Sci. 2000; 4: 215-222
        • Carper R.A.
        • Courchesne E.
        Localized enlargement of the frontal cortex in early autism.
        Biol Psychiatry. 2005; 57: 126-133
        • Carter C.S.
        • Braver T.S.
        • Barch D.M.
        • Botvinick M.M.
        • Noll D.
        • Cohen J.D.
        Anterior cingulate cortex, error detection and the online monitoring of performance.
        Science. 1998; 280: 747-749
        • Carter C.S.
        • MacDonald A.M.
        • Botvinick M.M.
        • Ross L.L.
        • Stenger V.A.
        • Noll D.
        • et al.
        Parsing executive processes: Strategic versus evaluative functions of the anterior cingulate cortex.
        Proc Natl Acad Sci U S A. 2000; 97: 1944-1948
        • Casey B.J.
        • Trainor R.J.
        • Orendi J.L.
        • Schubert A.B.
        • Nystrom L.E.
        • Giedd J.N.
        • et al.
        A developmental functional MRI study of prefrontal activation during performance of a go-no-go task.
        J Cogn Neurosci. 1997; 9: 835-847
        • Castelli F.
        • Frith C.
        • Happé F.
        • Frith U.
        Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes.
        Brain. 2002; 125: 1839-1849
        • Cavada C.
        • Company T.
        • Tejedor J.
        • Cruz-Rizzolo R.J.
        • Reinoso-Suarez F.
        The anatomical connections of the macaque monkey orbitofrontal cortex.
        Cereb Cortex. 2000; 10: 220-242
        • Conway A.R.
        • Tuholski S.W.
        • Shisler R.J.
        • Engle R.W.
        The effect of memory load on negative priming: An individual differences investigation.
        Mem Cogn. 1999; 27: 1042-1050
        • Corbetta M.
        • Kincade J.M.
        • Ollinger J.M.
        • McAvoy M.P.
        • Shulman G.L.
        Voluntary orienting is dissociated from target detection in human posterior parietal cortex.
        Nat Neurosci. 2000; 3: 292-297
        • Coull J.T.
        • Frith C.D.
        • Frackowiak R.S.
        • Grasby P.M.
        A fronto-parietal network for rapid visual information processing: A PET study of sustained attention and working memory.
        Neuropsychologia. 1996; 34: 1085-1095
        • Courchesne E.
        • Pierce K.
        Why the frontal cortex in autism might be talking only to itself: Local over-connectivity but long-distance disconnections.
        Curr Opin Neurobiol. 2005; 15: 225-230
        • Egner T.
        • Hirsch J.
        The neural correlates and functional integration of cognitive control in a Stroop task.
        Neuroimage. 2005; 24: 539-547
        • Eskes G.A.
        • Bryson S.E.
        • McCormick T.A.
        Comprehension of concrete and abstract words in autistic children.
        J Autism Dev Disord. 1990; 20: 61-73
        • Friston K.
        • Ashburner J.
        • Frith C.
        • Poline J.-B.
        • Heather J.
        • Frackowiak R.
        Spatial registration and normalization of images.
        Hum Brain Mapp. 1995; 2: 165-189
        • Garavan H.
        • Ross T.J.
        • Murphy K.
        • Roche R.A.P.
        • Stein E.A.
        Dissociable executive functions in the dynamic control of behavior: Inhibition, error detection, and correction.
        Neuromage. 2002; 17: 1820-1829
        • Garavan H.
        • Ross T.J.
        • Stein E.A.
        Right hemispheric dominance of inhibitory control: An event-related functional MRI study.
        Proc Natl Acad Sci U S A. 1999; 96: 8301-8306
        • Goldberg M.C.
        • Lasker A.G.
        • Zee D.S.
        • Garth E.
        • Landa R.J.
        • Tien A.
        • et al.
        Deficits in the initiation of eye movements in the absence of a visual target in adolescents with high-functioning autism.
        Neuropsychologia. 2002; 40: 2039-2049
        • Goldberg M.C.
        • Mostofsky S.H.
        • Cutting L.E.
        • Mahone E.M.
        • Astor B.C.
        • Denckla M.B.
        • et al.
        Subtle executive impairment in children with autism and children with ADHD.
        J Autism Dev Disord. 2005; 35: 279-293
        • Gomot M.
        • Bernard F.A.
        • Davis M.H.
        • Belmonte M.K.
        • Ashwin C.
        • Bullmore E.T.
        • et al.
        Change detection in children with autism: An auditory event-related fMRI study.
        Neuroimage. 2006; 29: 475-484
        • Haznedar M.M.
        • Buchsbaum M.S.
        • Metzger M.
        • Solimando A.
        • Spiegel-Cohen J.
        • Hollander E.
        Anterior cingulated gyrus volume and glucose metabolism in autistic disorder.
        Am J Psychiatry. 1997; 154: 1047-1050
        • Haznedar M.M.
        • Buchsbaum M.S.
        • Wei T.C.
        • Hof P.R.
        • Cartwright C.
        • Bienstock C.A.
        • et al.
        Limbic circuitry in patients with autism spectrum disorders studied with positron emission tomography and magnetic resonance imaging.
        Am J Psychiatry. 2000; 157: 1994-2001
        • Horwitz B.
        • Rumsey J.M.
        • Grady C.L.
        • Rapoport S.I.
        The cerebral metabolic landscape in autism: Intercorrelations of regional glucose utilization.
        Arch Neurol. 1988; 45: 749-755
        • Hughes C.
        Brief report: Planning problems in autism at the level of motor control.
        J Autism Dev Disord. 1996; 26: 99-107
        • Hughes C.
        • Russell J.
        Autistic children’s difficulty with mental disengagement from an object: Its implications for theories of autism.
        Dev Psychol. 1993; 29: 498-510
        • Joseph R.M.
        • McGrath L.M.
        • Tager-Flusberg H.
        Executive dysfunction and its relation to language ability in verbal school-age children with autism.
        Dev Neuropsychol. 2005; 27: 361-378
        • Just M.A.
        • Cherkassky V.L.
        • Keller T.A.
        • Minshew N.J.
        Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity.
        Brain. 2004; 127: 1811-1821
      1. Just MA, Keller TA, Kana RK, Cherkassky V, Carpenter PA, Minshew NJ (in press): Executive processing in the Tower of London puzzle in high-functioning autism.

        • Kana R.K.
        • Keller T.A.
        • Cherkassky V.L.
        • Minshew N.J.
        • Just M.A.
        Sentence comprehension in autism: Thinking in pictures with decreased functional connectivity.
        Brain. 2006; 129: 2484-2493
        • Kleinhans N.
        • Akshoomoff N.
        • Delis D.C.
        Executive functions in autism and Asperger’s disorder: Flexibility, fluency, and inhibition.
        Dev Neuropsychol. 2005; 27: 379-401
        • Korkman M.
        • Kirk U.
        • Kemp S.
        NEPSY: A Developmental Neuropsychological Assessment. Psychological Corporation, San Antonio, TX1998
        • Koshino H.
        • Carpenter P.A.
        • Minshew N.J.
        • Cherkassky V.L.
        • Keller T.A.
        • Just M.A.
        Functional connectivity in an fMRI working memory task in high-functioning autism.
        Neuroimage. 2005; 24: 810-821
        • Liddle P.F.
        • Kiehl K.A.
        • Smith A.M.
        Event-related fMRI study of response inhibition.
        Hum Brain Mapp. 2001; 12: 100-109
        • Lord C.
        • Risi S.
        • Lambrecht L.
        • Cook Jr, E.H.
        • Leventhal B.L.
        • DiLavore P.C.
        • et al.
        The Autism Diagnostic Observation Schedule-Generic: A standard measure of social and communication deficits associated with the spectrum of autism.
        J Autism Dev Disord. 2000; 30: 205-223
        • Lord C.
        • Rutter M.
        • LeCouteur A.
        Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders.
        J Autism Dev Disord. 1994; 24: 659-685
        • Luna B.
        • Doll B.S.
        • Hegedus S.J.
        • Minshew N.J.
        • Sweeney J.A.
        Maturation of executive function in autism.
        Biol Psychiatry. 2006; ([Epub ahead of print])
        • Luna B.
        • Minshew N.J.
        • Garver K.E.
        • Lazar N.A.
        • Thulborn K.R.
        • Eddy W.F.
        • et al.
        Neocortical system abnormalities in autism.
        Neurology. 2002; 59: 834-840
        • McLaughlin T.
        • Steinberg B.
        • Christensen B.
        • Law I.
        • Parving A.
        • Friberg L.
        Potential language and attentional networks revealed through factor analysis of rCBF data measured with SPECT.
        J Cereb Blood Flow Metab. 1992; 12: 535-545
        • Mesulam M.M.
        Large-scale neurocognitive networks and distributed processing for attention, language and memory.
        Ann Neurol. 1990; 28: 597-613
        • Mesulam M.M.
        From sensation to cognition.
        Brain. 1998; 121: 1013-1052
        • Miller E.K.
        • Cohen J.D.
        An integrative theory of prefrontal cortex function.
        Annu Rev Neurosci. 2001; 24: 67-202
        • Minshew N.J.
        • Goldstein G.
        • Siegel D.
        Neuropsychologic functioning in autism: Profile of a complex information processing disorder.
        J Int Neuropsychol Soc. 1997; 3: 303-316
        • Minshew N.J.
        • Luna B.
        • Sweeney J.A.
        Oculomotor evidence for neocortical systems but not cerebellar dysfunction in autism.
        Neurology. 1999; 52: 917-922
        • Minshew N.J.
        • Meyer J.
        • Goldstein G.
        Abstract reasoning in autism: A dissociation between concept formation and concept identification.
        Neuropsychology. 2002; 16: 327-334
        • Musil S.Y.
        • Olson C.R.
        Organization of cortical and subcortical projections to medial prefrontal cortex in cat.
        J Comp Neurol. 1988; 272: 219-241
        • Ohnishi T.
        • Matsuda H.
        • Hashimoto T.
        • Kunihiro T.
        • Nishikawa M.
        • Uema T.
        • et al.
        Abnormal regional cerebral blood flow in childhood autism.
        Brain. 2000; 123: 1838-1844
        • Ozonoff S.
        • Jensen J.
        Brief report: Specific executive function profiles in three neurodevelopmental disorders.
        J Autism Dev Disord. 1999; 29: 171-177
        • Ozonoff S.
        • Strayer D.L.
        Inhibitory function in nonretarded children with autism.
        J Autism Dev Disord. 1997; 27: 59-77
        • Ozonoff S.
        • Strayer D.L.
        • McMahon W.M.
        • Filloux F.
        Executive function abilities in autism and Tourette syndrome: An information processing approach.
        J Child Psychol Psychiatry. 1994; 35: 1015-1032
        • Paulesu E.
        • Frith U.
        • Snowling M.
        • Gallagher A.
        • Morton J.
        • Frackowiak R.
        • et al.
        Is developmental dyslexia a disconnection syndrome?.
        Brain. 1996; 119: 143-157
        • Peterson B.S.
        • Skudlarski P.
        • Gatenby J.C.
        • Zhang H.
        • Anderson A.W.
        • Gore J.C.
        An fMRI study of Stroop word-color interference: Evidence for cingulate subregions subserving multiple distributed attentional systems.
        Biol Psychiatry. 1999; 45: 1237-1258
        • Rinehart N.J.
        • Bradshaw J.L.
        • Moss S.A.
        • Brereton A.V.
        • Tonge B.J.
        A deficit in shifting attention present in high-functioning autism but not Asperger’s disorder.
        Autism. 2001; 5: 67-80
        • Roberts R.J.
        • Hager L.D.
        • Heron C.
        Prefrontal cognitive processes: Working memory and inhibition in the antisaccade task.
        J Exp Psychol. 1994; 123: 374-393
        • Rubia K.
        • Smith A.B.
        • Brammer M.J.
        • Taylor E.
        Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection.
        Neuroimage. 2003; 20: 351-358
        • Russell J.
        How executive disorders can bring about an inadequate ‘theory of mind.’.
        in: Russell J. Autism as an Executive Disorder. Oxford University Press, Oxford, England1997: 256-304
        • Schmitz N.
        • Rubia K.
        • Daly E.
        • Smith A.
        • Williams S.
        • Murphy D.G.M.
        Neural correlates of executive function in autistic spectrum disorders.
        Biol Psychiatry. 2006; 59: 7-16
        • Siegel Jr, B.J.
        • Nuechterlein K.H.
        • Abel L.
        • Wu J.C.
        • Buchsbaum M.S.
        Glucose metabolic correlates of continuous performance test performance in adults with a history of infantile autism, schizophrenics, and controls.
        Schizophr Res. 1995; 17: 85-94
        • van Veen V.
        • Cohen J.D.
        • Botvinick M.M.
        • Stenger V.A.
        • Carter C.S.
        Anterior cingulate cortex, conflict monitoring, and levels of processing.
        Neuroimage. 2001; 14: 1302-1308
        • Vogt B.A.
        • Pandya D.N.
        Cingulate cortex of the rhesus monkey.
        J Comp Neurol. 1987; 262: 271-289
        • Wager T.D.
        • Reading S.
        • Jonides J.
        Neuroimaging studies of shifting attention: A meta-analysis.
        Neuroimage. 2004; 22: 1679-1693
        • Wager T.D.
        • Smith E.E.
        Neuroimaging studies of working memory: A meta-analysis.
        Cogn Affect Behav Neurosci. 2003; 3: 255-274
        • Watanabe J.
        • Sugiura M.
        • Sato K.
        • Sato Y.
        • Maeda Y.
        • Matsue Y.
        • et al.
        The human prefrontal and parietal association cortices are involved in no-go performances: An event-related fMRI study.
        Neuroimage. 2002; 17: 1207-1216
        • Wechsler D.
        Wechsler Abbreviated Scale of Intelligence (WASI). Psychological Corporation, San Antonio, TX1999
        • Wyland C.
        • Kelley W.M.
        • Macrae N.C.
        • Gordon H.
        • Heatherton T.F.
        Neural correlates of thought suppression.
        Neuropsychologia. 2003; 41: 1863-1867