Dimensional Analysis of ADHD Subtypes in Rats

  • Candice Blondeau
    Hôpital Charles Perrens, Université Victor Segalen Bordeaux 2 CNRS UMR 554-1, Bordeaux, France
    Search for articles by this author
  • Françoise Dellu-Hagedorn
    Address reprint requests to Françoise Dellu-Hagedorn, Ph.D., Laboratoire de Neuropsychobiologie des Désadaptations, CNRS UMR 5541, Université Victor Segalen Bordeaux 2–BP. 31, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
    Laboratoire de Neuropsychobiologie des Désadaptations, Université Victor Segalen Bordeaux 2 CNRS UMR 554-1, Bordeaux, France.
    Search for articles by this author


      Attention-deficit/hyperactivity disorder is a heterogeneous disorder that is classified into three subtypes in which the main symptoms, inattention, hyperactivity, and impulsivity, are expressed with various degrees of severity. The nature of the biological dysfunction sustaining each subtype (common or distinct) is unknown, and animal models encompassing different subtypes are needed.


      A cluster analysis separated subgroups of rats on the basis of similarities in both impulsivity and attentional scores in the five-choice serial reaction time task. These subgroups were characterized behaviorally and were compared for several aspects of spontaneous hyperactivity in different environmental contexts. The dose effects of two agents used clinically (methylphenidate and atomoxetine) were tested on attention and impulsivity.


      Four distinct subgroups were demonstrated: efficient, middle, inattentive, and inattentive–impulsive. Hyperactivity expressed in a cage, characterized the last subgroup. Subgroups were differentially sensitive to environmental and pharmacologic challenges. Methylphenidate increased impulsivity mainly in the combined subgroup, whereas atomoxetine decreased impulsivity, neither with any effect on the efficient subgroup and on accuracy.


      This new approach is the first to demonstrate behavioral subtypes in rats that parallel those observed in human beings and is a promising tool to clarify the biological bases of these behavioral subtypes and to explain therapeutic effects.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Antrop I.
        • Roeyers H.
        • Van Oost P.
        • Buysse A.
        Stimulation seeking and hyperactivity in children with ADHD.
        J Child Psychol Psychiatry. 2000; 41: 225-231
        • Barbelivien A.
        • Ruotsalainen S.
        • Sirvio J.
        Metabolic alterations in the prefrontal and cingulate cortices are related to behavioral deficits in a rodent model of attention-deficit hyperactivity disorder.
        Cereb Cortex. 2001; 11: 1056-1063
        • Barkley R.A.
        A review of stimulant drug research with hyperactive children.
        J Child Psychol Psychiatry. 1977; 18: 137-165
        • Barkley R.A.
        The inattentive type of ADHD as a distinct disorder: What remains to be done.
        Clin Psychol Sci Prac. 2001; 8: 489-493
        • Baunez C.
        • Robbins T.W.
        Effects of dopamine depletion of the dorsal striatum and further interaction with subthalamic nucleus lesions in an attentional task in the rat.
        Neuroscience. 1999; 92: 1343-1356
        • Bolden-Watson C.
        • Richelson E.
        Blockade by newly-developed antidepressants of biogenic amine uptake into rat brain synaptosomes.
        Life Sci. 1993; 52: 1023-1029
        • Bymaster F.P.
        • Katner J.S.
        • Nelson D.L.
        • Hemrick-Luecke S.K.
        • Threlkeld P.G.
        • Heiligenstein J.H.
        • et al.
        Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: A potential mechanism for efficacy in attention deficit/hyperactivity disorder.
        Neuropsychopharmacology. 2002; 27: 699-711
        • Carr K.D.
        • Tsimberg Y.
        • Berman Y.
        • Yamamoto N.
        Evidence of increased dopamine receptor signaling in food-restricted rats.
        Neuroscience. 2003; 119: 1157-1167
        • Cole B.J.
        • Robbins T.W.
        Amphetamine impairs the discriminative performance of rats with dorsal noradrenergic bundle lesions on a 5-choice serial reaction time task: New evidence for central dopaminergic-noradrenergic interactions.
        Psychopharmacology. 1987; 91: 458-466
        • Cole B.J.
        • Robbins T.W.
        Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi on performance of a 5-choice serial reaction time task in rats: Implications for theories of selective attention and arousal.
        Behav Brain Res. 1989; 33: 165-179
        • Crawley J.N.
        Exploratory behavior models of anxiety in mice.
        Neurosci Biobehav Rev. 1985; 9: 37-44
        • Dalley J.W.
        • Theobald D.E.
        • Eagle D.M.
        • Passetti F.
        • Robbins T.W.
        Deficits in impulse control associated with tonically-elevated serotonergic function in rat prefrontal cortex.
        Neuropsychopharmacology. 2002; 26: 716-728
        • Dalley J.W.
        • Theobald D.E.
        • Pereira E.A.
        • Li P.M.
        • Robbins T.W.
        Specific abnormalities in serotonin release in the prefrontal cortex of isolation-reared rats measured during behavioural performance of a task assessing visuospatial attention and impulsivity.
        Psychopharmacology (Berl). 2002; 164: 329-340
        • Davids E.
        • Zhang K.
        • Tarazi F.I.
        • Baldessarini R.J.
        Animal models of attention-deficit hyperactivity disorder.
        Brain Res Brain Res Rev. 2003; 42: 1-21
        • Dellu F.
        • Mayo W.
        • Piazza P.V.
        • Le Moal M.
        • Simon H.
        Individual differences in behavioral responses to novelty in rats.
        Pers Indiv Diff. 1993; 14: 411-418
        • Dellu F.
        • Piazza P.V.
        • Mayo W.
        • Le Moal M.
        • Simon H.
        Novelty-seeking in rats—Biobehavioral characteristics and possible relationship with the sensation-seeking trait in man.
        Neuropsychobiology. 1996; 34: 136-145
        • Dellu-Hagedorn F.
        Spontaneous individual differences in cognitive performances of young adult rats predict locomotor response to amphetamine.
        Neurobiol Learn Mem. 2005; 83: 43-47
        • Dellu-Hagedorn F.
        • Trunet S.
        • Simon H.
        Impulsivity in youth predicts early age-related cognitive deficits in rats.
        Neurobiol Aging. 2004; 25: 525-537
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders. 4th ed. American Psychiatric Press, Washington, DC1994
        • Evenden J.L.
        Varieties of impulsivity.
        Psychopharmacology (Berl). 1999; 146: 348-361
        • Genn R.F.
        • Tucci S.A.
        • Thomas A.
        • Edwards J.E.
        • File S.E.
        Age-associated sex differences in response to food deprivation in two animal tests of anxiety.
        Neurosci Biobehav Rev. 2003; 27: 155-161
        • Gilbert D.L.
        • Ridel K.R.
        • Sallee F.R.
        • Zhang J.
        • Lipps T.D.
        • Wassermann E.M.
        Comparison of the inhibitory and excitatory effects of ADHD medications methylphenidate and atomoxetine on motor cortex.
        Neuropsychopharmacology. 2006; 31: 442-449
        • Granon S.
        • Passetti F.
        • Thomas K.L.
        • Dalley J.W.
        • Everitt B.J.
        • Robbins T.W.
        Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex.
        J Neurosci. 2000; 20: 1208-1215
        • Greenhill L.L.
        • Pliszka S.
        • Dulcan M.K.
        • Bernet W.
        • Arnold V.
        • Beitchman J.
        • et al.
        Practice parameter for the use of stimulant medications in the treatment of children, adolescents, and adults.
        J Am Acad Child Adolesc Psychiatry. 2002; 41: 26S-49S
        • Harrison A.A.
        • Everitt B.J.
        • Robbins T.W.
        Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: Interactions with dopaminergic mechanisms.
        Psychopharmacology (Berl). 1997; 133: 329-342
        • Hinshaw S.P.
        Is the inattentive type of ADHD a separate disorder?.
        Clin Psychol Sci Prac. 2001; 8: 498-501
        • Kuczenski R.
        • Segal D.S.
        Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: Comparison with amphetamine.
        J Neurochem. 1997; 68: 2032-2037
        • Kuczenski R.
        • Segal D.S.
        Dynamic changes in sensitivity occur during the acute response to cocaine and methylphenidate.
        Psychopharmacology (Berl). 1999; 147: 96-103
        • Lahey B.B.
        Should the combined and predominantly inattentive types of ADHD be considered distinct and unrelated disorders?.
        Clin Psychol Sci Prac. 2001; 8: 494-497
        • Laviola G.
        • Macri S.
        • Morley-Fletcher S.
        • Adriani W.
        Risk-taking behavior in adolescent mice: Psychobiological determinants and early epigenetic influence.
        Neurosci Biobehav Rev. 2003; 27: 19-31
        • Mackworth J.F.
        The effect of amphetamine on the detectability of signals in a vigilance task.
        Can J Psychol. 1965; 19: 104-110
        • Madras B.K.
        • Miller G.M.
        • Fischman A.J.
        The dopamine transporter and attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2005; 57: 1397-1409
        • Marsh P.
        • Williams L.
        An investigation of individual typologies of attention-deficit hyperactivity disorder using cluster analysis of DSM-IV criteria.
        Pers Indiv Diff. 2004; 36: 1187-1195
        • Michelson D.
        • Faries D.
        • Wernicke J.
        • Kelsey D.
        • Kendrick K.
        • Sallee F.R.
        • et al.
        Atomoxetine in the treatment of children and adolescents with attention-deficit/hyperactivity disorder: A randomized, placebo-controlled, dose-response study.
        Pediatrics. 2001; 108: E83
        • Milich R.
        • Balentine A.C.
        • Lynam D.R.
        ADHD combined type and ADHD predominantly inattentive type are distinct and unrelated disorders.
        Clin Psychol Sci Prac. 2001; 8: 463-488
        • Millan M.J.
        • Dekeyne A.
        • Gobert A.
        Serotonin (5-HT)2C receptors tonically inhibit dopamine (DA) and noradrenaline (NA), but not 5-HT, release in the frontal cortex in vivo.
        Neuropharmacology. 1998; 37: 953-955
        • Mueller D.T.
        • Herman G.
        • Eikelboom R.
        Effects of short- and long-term wheel deprivation on running.
        Physiol Behav. 1999; 66: 101-107
        • Muir J.L.
        • Everitt B.J.
        • Robbins T.W.
        The cerebral cortex of the rat and visual attentional function: Dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time task.
        Cereb Cortex. 1996; 6: 470-481
        • Oades R.D.
        The roles of norepinephrine and serotonin in attention deficit hyperactivity disorder.
        in: Gozal D. Molfese D. Attention Deficit Hyperactivity Disorder: From Genes to Patients. Humana Press Inc, Totowa, NJ2005: 97-130
        • Pelham W.E.
        Are ADHD/I and ADHD/C the same or different?.
        Clin Psychol Sci Prac. 2001; 8: 502-506
        • Puumala T.
        • Ruotsalainen S.
        • Jakala P.
        • Koivisto E.
        • Riekkinen Jr, P.
        • Sirvio J.
        Behavioral and pharmacological studies on the validation of a new animal model for attention deficit hyperactivity disorder.
        Neurobiol Learn Mem. 1996; 66: 198-211
        • Puumala T.
        • Sirvio J.
        Changes in activities of dopamine and serotonin systems in the frontal cortex underlie poor choice accuracy and impulsivity of rats in an attention task.
        Neuroscience. 1998; 83: 489-499
        • Robbins T.W.
        The 5-choice serial reaction time task: Behavioural pharmacology and functional neurochemistry.
        Psychopharmacology (Berl). 2002; 163: 362-380
        • Sagvolden T.
        • Russell V.A.
        • Aase H.
        • Johansen E.B.
        • Farshbaf M.
        Rodent models of attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2005; 57: 1239-1247
        • Sagvolden T.
        • Sergeant J.A.
        Attention deficit/hyperactivity disorder–from brain dysfunctions to behaviour.
        Behav Brain Res. 1998; 94: 1-10
        • Sherwin C.M.
        Voluntary wheel running: A review and novel interpretation.
        Anim Behav. 1998; 56: 11-27
        • Sleator E.K.
        • Ullmann R.K.
        Can the physician diagnose hyperactivity in the office?.
        Pediatrics. 1981; 67: 13-17
        • Spencer T.
        • Biederman J.
        Non-stimulant treatment for attention-deficit/hyperactivity disorder.
        J Atten Disord. 2002; 6: S109-S119
        • Spencer T.
        • Biederman J.
        • Wilens T.
        • Harding M.
        • O’Donnell D.
        • Griffin S.
        Pharmacotherapy of attention-deficit hyperactivity disorder across the life cycle.
        J Am Acad Child Adolesc Psychiatry. 1996; 35: 409-432
        • Spencer T.J.
        • Biederman J.
        • Wilens T.E.
        • Faraone S.V.
        Novel treatments for attention-deficit/hyperactivity disorder in children.
        J Clin Psychiatry. 2002; 63: 16-22
        • Swanson J.M.
        • Sergeant J.A.
        • Taylor E.
        • Sonuga-Barke E.J.
        • Jensen P.S.
        • Cantwell D.P.
        Attention-deficit hyperactivity disorder and hyperkinetic disorder.
        Lancet. 1998; 351: 429-433
        • Volkow N.D.
        • Wang G.
        • Fowler J.S.
        • Logan J.
        • Gerasimov M.
        • Maynard L.
        • et al.
        Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain.
        J Neurosci. 2001; 21: RC121
        • Ward A.S.
        • Kelly T.H.
        • Foltin R.W.
        • Fischman M.W.
        Effects of d-amphetamine on task performance and social behavior of humans in a residential laboratory.
        Exp Clin Psychopharmacol. 1997; 5: 130-136
        • Ward J.H.
        Hierarchical grouping to optimize an objective function.
        J Am Stat Assoc. 1963; 58: 236-244
        • Winstanley C.A.
        • Theobald D.E.
        • Dalley J.W.
        • Cardinal R.N.
        • Robbins T.W.
        Double dissociation between serotonergic and dopaminergic modulation of medial prefrontal and orbitofrontal cortex during a test of impulsive choice.
        Cereb Cortex. 2006; 16: 106-114
        • Winstanley C.A.
        • Theobald D.E.
        • Dalley J.W.
        • Robbins T.W.
        Interactions between serotonin and dopamine in the control of impulsive choice in rats: Therapeutic implications for impulse control disorders.
        Neuropsychopharmacology. 2005; 30: 669-682
        • Zentall S.S.
        • Meyer M.J.
        Self-regulation of stimulation for ADD-H children during reading and vigilance task performance.
        J Abnorm Child Psychol. 1987; 15: 519-536
        • Zentall S.S.
        • Zentall T.R.
        Optimal stimulation: A model of disordered activity and performance in normal and deviant children.
        Psychol Bull. 1983; 94: 446-471