Advertisement

Role of Ventral Striatal Dopamine D1 Receptor in Cigarette Craving

      Background

      Several theories of cigarette craving suggest that dopaminergic function in the ventral striatum plays an important role. The objective of this study was to determine correlations between craving-related brain activation and dopamine D1 receptor (D1R) binding in smokers.

      Methods

      Twelve smokers and 12 nonsmoking controls underwent [15O]H2O-positron emission tomography activation study and D1R-binding study using [11C]SCH 23390, and the correlations between receptor binding and cue-induced regional cerebral blood flow (rCBF) changes were assessed. Consecutive D1R-binding changes were examined during a period of 6 months of postsmoking abstinence in five smokers.

      Results

      Cue-induced activation was observed in the left ventral striatum including the nucleus accumbens in smokers. D1R binding in the ventral striatum showed a negative relationship with cue-induced craving and rCBF changes. D1R binding was significantly low in smokers, and there was a trend of increase after smoking abstinence.

      Conclusions

      D1R binding and cue-induced rCBF changes in the ventral striatum suggest the important role of D1R in this region in cigarette craving.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abi-Dargham A.
        • Simpson N.
        • Kegeles L.
        • Parsey R.
        • Hwang D.R.
        • Anjilvel S.
        • et al.
        PET studies of binding competition between endogenous dopamine and the D1 radiotracer [11C]NNC 756.
        Synapse. 1999; 32: 93-109
        • Brody A.L.
        • Mandelkern M.A.
        • London E.D.
        • Childress A.R.
        • Lee G.S.
        • Bota R.G.
        • et al.
        Brain metabolic changes during cigarette craving.
        Arch Gen Psychiatry. 2002; 59: 1162-1172
        • Cardinal R.N.
        • Everitt B.J.
        Neural and psychological mechanisms underlying appetitive learning: Links to drug addiction.
        Curr Opin Neurobiol. 2004; 14: 156-162
        • Cardinal R.N.
        • Parkinson J.A.
        • Hall J.
        • Everitt B.J.
        Emotion and motivation: The role of the amygdala, ventral striatum, and prefrontal cortex.
        Neurosci Biobehav Rev. 2002; 26: 321-352
        • Carlezon Jr, W.A.
        • Wise R.A.
        Microinjections of phencyclidine (PCP) and related drugs into nucleus accumbens shell potentiate medial forebrain bundle brain stimulation reward.
        Psychopharmacology (Berl). 1996; 128: 413-420
        • Chou Y.H.
        • Karlsson P.
        • Halldin C.
        • Olsson H.
        • Farde L.
        A PET study of D1-like dopamine receptor ligand binding during altered endogenous dopamine levels in the primate brain.
        Psychopharmacology (Berl). 1999; 146: 220-227
        • Corrigall W.
        • Franklin K.
        • Coen K.
        • Clarke P.
        The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine.
        Psychopharmacology (Berl). 1992; 107: 285-289
        • Cumming P.
        • Yokoi F.
        • Chen A.
        • Deep P.
        • Dagher A.
        • Reutens D.
        • et al.
        Pharmacokinetics of radiotracers in human plasma during positron emission tomography.
        Synapse. 1999; 34: 124-134
        • Dagher A.
        • Bleicher C.
        • Aston J.A.
        • Gunn R.N.
        • Clarke P.B.
        • Cumming P.
        Reduced dopamine D1 receptor binding in the ventral striatum of cigarette smokers.
        Synapse. 2001; 42: 48-53
        • David S.P.
        • Munafo M.R.
        • Johansen-Berg H.
        • Smith S.M.
        • Rogers R.D.
        • Matthews P.M.
        • et al.
        Ventral striatum/nucleus accumbens activation to smoking-related pictorial cues in smokers and nonsmokers: A functional magnetic resonance imaging study.
        Biol Psychiatry. 2005; 58: 488-494
        • D’Esposito M.
        • Detre J.A.
        • Aguirre G.K.
        • Stallcup M.
        • Alsop D.C.
        • Tippet L.J.
        • et al.
        A functional MRI study of mental image generation.
        Neuropsychologia. 1997; 35: 725-730
        • Deutch A.Y.
        • Cameron D.S.
        Pharmacological characterization of dopamine systems in the nucleus accumbens core and shell.
        Neuroscience. 1992; 46: 49-56
        • Di Ciano P.
        • Everitt B.J.
        Dissociable effects of antagonism of NMDA and AMPA/KA receptors in the nucleus accumbens core and shell on cocaine-seeking behavior.
        Neuropsychopharmacology. 2001; 25: 341-360
        • Drummond D.
        Theories of drug craving, ancient and modern.
        Addiction. 2001; 96: 33-46
        • Due D.L.
        • Huettel S.A.
        • Hall W.G.
        • Rubin D.C.
        Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: Evidence from functional magnetic resonance imaging.
        Am J Psychiatry. 2002; 159: 954-960
        • Fagerstrom K.
        Measuring degree of physical dependence to tobacco smoking with reference to individualization of treatment.
        Addict Behav. 1978; 3: 235-241
        • Franklin T.
        • Napier K.
        • Ehrman R.
        • Gariti P.
        • O’Brien C.
        • Childress A.
        Retrospective study: Influence of menstrual cycle on cue-induced cigarette craving.
        Nicotine Tob Res. 2004; 6: 171-175
        • Garavan H.
        • Pankiewicz J.
        • Bloom A.
        • Cho J.K.
        • Sperry L.
        • Ross T.J.
        • et al.
        Cue-induced cocaine craving: Neuroanatomical specificity for drug users and drug stimuli.
        Am J Psychiatry. 2000; 157: 1789-1798
        • Gunn R.N.
        • Lammertsma A.A.
        • Hume S.P.
        • Cunningham V.J.
        Parametric imaging of ligand-receptor binding in PET using a simplified reference region model.
        Neuroimage. 1997; 6: 279-287
        • Harvey J.
        • Lacey M.G.
        Endogenous and exogenous dopamine depress EPSCs in rat nucleus accumbens in vitro via D1 receptors activation.
        J Physiol. 1996; 492: 143-154
        • Heinz A.
        • Siessmeier T.
        • Wrase J.
        • Buchholz H.G.
        • Grunder G.
        • Kumakura Y.
        • et al.
        Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: A combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients.
        Am J Psychiatry. 2005; 162: 1515-1520
        • Heinz A.
        • Siessmeier T.
        • Wrase J.
        • Hermann D.
        • Klein S.
        • Grusser S.M.
        • et al.
        Correlation between dopamine D2 receptors in the ventral striatum and central processing of alcohol cues and craving.
        Am J Psychiatry. 2004; 161: 1783-1789
        • Hirvonen J.
        • Nagren K.
        • Kajander J.
        • Hietala J.
        Measurement of cortical dopamine D1 receptor binding with [11C]SCH23390: A test-retest analysis.
        J Cereb Blood Flow Metab. 2001; 21: 1146-1150
        • Hukkanen J.
        • Jacob 3rd, P.
        • Benowitz N.L.
        Metabolism and disposition kinetics of nicotine.
        Pharmacol Rev. 2005; 57: 79-115
        • Hutcheson D.M.
        • Parkinson J.A.
        • Robbins T.W.
        • Everitt B.J.
        The effects of nucleus accumbens core and shell lesions on intravenous heroin self-administration and the acquisition of drug-seeking behaviour under a second-order schedule of heroin reinforcement.
        Psychopharmacology (Berl). 2001; 153: 464-472
        • Ito R.
        • Robbins T.W.
        • Everitt B.J.
        Differential control over cocaine-seeking behavior by nucleus accumbens core and shell.
        Nat Neurosci. 2004; 7: 389-397
        • Koob G.F.
        • Le Moal M.
        Drug abuse: Hedonic homeostatic dysregulation.
        Science. 1997; 278: 52-58
        • Lammertsma A.A.
        • Hume S.P.
        Simplified reference tissue model for PET receptor studies.
        Neuroimage. 1997; 4: 153-158
        • McClernon F.
        • Hiott F.
        • Huettel S.
        • Rose J.
        Abstinence-induced changes in self-report craving correlate with event-related FMRI responses to smoking cues.
        Neuropsychopharmacology. 2005; 30: 1940-1947
        • Meyer J.H.
        • Gunn R.N.
        • Myers R.
        • Grasby P.M.
        Assessment of spatial normalization of PET ligand images using ligand-specific templates.
        Neuroimage. 1999; 9: 545-553
        • Miyata H.
        • Yanagita T.
        Neurobiological mechanisms of nicotine craving.
        Alcohol. 2001; 24: 87-93
        • Nicola S.M.
        • Kombian S.B.
        • Malenka R.C.
        Psychostimulants depress excitatory synaptic transmission in the nucleus accumbens via presynaptic D1-like dopamine receptors.
        J Neurosci. 1996; 16: 1591-1604
        • Nicola S.M.
        • Surmeier J.
        • Malenka R.C.
        Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens.
        Annu Rev Neurosci. 2000; 23: 185-215
        • Oldfield R.C.
        The assessment and analysis of handedness: The Edinburgh inventory.
        Neuropsychologia. 1971; 9: 97-113
        • Parkinson J.A.
        • Dalley J.W.
        • Cardinal R.N.
        • Bamford A.
        • Fehnert B.
        • Lachenal G.
        • et al.
        Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behaviour: Implications for mesoaccumbens dopamine function.
        Behav Brain Res. 2002; 137: 149-163
        • Pennartz C.M.
        • Groenewegen H.J.
        • Lopes da Silva F.H.
        The nucleus accumbens as a complex of functionally distinct neuronal ensembles: An integration of behavioural, electrophysiological and anatomical data.
        Prog Neurobiol. 1994; 42: 719-761
        • Rice M.E.
        • Cragg S.J.
        Nicotine amplifies reward-related dopamine signals in striatum.
        Nat Neurosci. 2004; 7: 583-584
        • Squire L.
        • Zola S.
        Structure and function of declarative and nondeclarative memory systems.
        Proc Natl Acad Sci U S A. 1996; 93: 13515-13522
        • Swahn C.-G.
        • Halldin C.
        • Farde L.
        • Sedvall G.
        Metabolism of the PET ligand [11C]SCH 23390.
        Hum Psychopharmacol. 1994; 9: 25-31
        • Talairach J.
        • Tournoux P.
        A Co-Planar Stereotaxic Atlas of the Human Brain. Thieme Medical Publishers, NY1988
        • Wilson S.J.
        • Sayette M.A.
        • Fiez J.A.
        Prefrontal responses to drug cues: A neurocognitive analysis.
        Nat Neurosci. 2004; 7: 211-214
        • Zald D.H.
        • Pardo J.V.
        Functional neuroimaging of the olfactory system in humans.
        Int J Psychophysiol. 2000; 36: 165-181
        • Zhang H.
        • Sulzer D.
        Frequency-dependent modulation of dopamine release by nicotine.
        Nat Neurosci. 2004; 7: 581-582
        • Zhou F.M.
        • Liang Y.
        • Dani J.A.
        Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum.
        Nat Neurosci. 2001; 4: 1224-1229