Advertisement

The Neurosteroid Allopregnanolone Is Reduced in Prefrontal Cortex in Alzheimer’s Disease

Published:September 25, 2006DOI:https://doi.org/10.1016/j.biopsych.2006.06.017

      Background

      Few data are currently available investigating neurosteroids (NS) in Alzheimer’s disease (AD). The NS allopregnanolone may be decreased in serum and plasma in patients with AD, but it is unclear if allopregnanolone is also reduced in brain. Because a number of NS exhibit neuroprotective effects and impact cognitive performance in rodent models, these molecules may be relevant to the pathophysiology of neurodegenerative disorders. We therefore investigated prefrontal cortex (PFC) NS levels in AD.

      Methods

      Neurosteroid levels (allopregnanolone, pregnenolone, dehydroepiandrosterone [DHEA]) were determined in postmortem PFC in 14 male subjects with AD and 15 cognitively intact male control subjects by gas chromatography/mass spectrometry preceded by high-performance liquid chromatography purification.

      Results

      Subjects with AD exhibit significant reductions in allopregnanolone compared with cognitively intact control subjects (median levels = 2.50 ng/g vs. 5.59 ng/g, respectively; p = .02). Allopregnanolone levels are inversely correlated with neuropathological disease stage (Braak), r = −.49, p = .007. Median DHEA levels are elevated in subjects with AD (p = .01).

      Conclusions

      Subjects with AD demonstrate significant reductions in PFC allopregnanolone levels, a finding that may be relevant to neuropathological disease stage severity. Neurosteroids may have utility as candidate biomarkers in AD.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ahmad I.
        • Lope-Piedrafita S.
        • Bi X.
        • Hicks C.
        • Yao Y.
        • Yu C.
        • et al.
        Allopregnanolone treatment, both as a single injection or repetitively, delays demyelination and enhances survival of Niemann-Pick C mice.
        J Neurosci Res. 2005; 82: 811-821
        • Akwa Y.
        • Ladurelle N.
        • Covey D.F.
        • Baulieu E.E.
        The synthetic enantiomer of pregnenolone sulfate is very active on memory in rats and mice, even more so than its physiological neurosteroid counterpart: Distinct mechanisms?.
        Proc Natl Acad Sci U S A. 2001; 98: 14033-14037
        • Alhaj H.A.
        • Massey A.E.
        • McAllister-Williams R.H.
        Effects of DHEA administration on episodic memory, cortisol and mood in healthy young men: a double-blind, placebo-controlled study.
        Psychopharmacology (Berl). 2005; : 1-11
        • Alomary A.A.
        • Fitzgerald R.L.
        • Purdy R.H.
        Neurosteroid analysis.
        Int Rev Neurobiol. 2001; 46: 97-115
        • Azcoitia I.
        • Leonelli E.
        • Magnaghi V.
        • Veiga S.
        • Garcia-Segura L.M.
        • Melcangi R.C.
        Progesterone and its derivatives dihydroprogesterone and tetrahydroprogesterone reduce myelin fiber morphological abnormalities and myelin fiber loss in the sciatic nerve of aged rats.
        Neurobiol Aging. 2003; 24: 53-860
        • Barbaccia M.L.
        • Affricano D.
        • Purdy R.H.
        • Maciocco E.
        • Spiga F.
        • Biggio G.
        Clozapine, but not haloperidol, increases brain concentrations of neuroactive steroids in the rat.
        Neuropsychopharmacology. 2001; 25: 89-497
        • Bartzokis G.
        Age-related myelin breakdown: A developmental model of cognitive decline and Alzheimer’s disease.
        Neurobiol Aging. 2004; 25 (author reply 49–62): 5-18
        • Bastianetto S.
        • Ramassamy C.
        • Poirier J.
        • Quirion R.
        Dehydroepiandrosterone (DHEA) protects hippocampal cells from oxidative stress-induced damage.
        Brain Res Mol Brain Res. 1999; 66: 35-41
        • Belelli D.
        • Lambert J.J.
        Neurosteroids: endogenous regulators of the GABA(A) receptor.
        Nat Rev Neurosci. 2005; 6: 565-575
        • Benes F.M.
        A disturbance of late myelination as a trigger for Alzheimer’s disease.
        Neurobiol Aging. 2004; 25: 41-43
        • Bergeron R.
        • de Montigny C.
        • Debonnel G.
        Potentiation of neuronal NMDA response induced by dehydroepiandrosterone and its suppression by progesterone: effects mediated via sigma receptors.
        J Neurosci. 1996; 16: 1193-1202
        • Bernardi F.
        • Lanzone A.
        • Cento R.M.
        • Spada R.S.
        • Pezzani I.
        • Genazzani A.D.
        • et al.
        Allopregnanolone and dehydroepiandrosterone response to corticotropin-releasing factor in patients suffering from Alzheimer’s disease and vascular dementia.
        Eur J Endocrinol. 2000; 142: 466-471
        • Bixo M.
        • Andersson A.
        • Winblad B.
        • Purdy R.H.
        • Backstrom T.
        Progesterone, 5alpha-pregnane-3,20-dione and 3alpha-hydroxy-5alpha-pregnane-20-one in specific regions of the human female brain in different endocrine states.
        Brain Res. 1997; 764: 173-178
        • Boccuzzi G.
        • Aragno M.
        • Seccia M.
        • Brignardello E.
        • Tamagno E.
        • Albano E.
        • et al.
        Protective effect of dehydroepiandrosterone against copper-induced lipid peroxidation in the rat.
        Free Radic Biol Med. 1997; 22: 1289-1294
        • Braak H.
        • Braak E.
        Neuropathological stageing of Alzheimer-related changes.
        Acta Neuropathol (Berl). 1991; 82: 239-259
        • Brown R.C.
        • Cascio C.
        • Papadopoulos V.
        Pathways of neurosteroid biosynthesis in cell lines from human brain: Regulation of dehydroepiandrosterone formation by oxidative stress and beta-amyloid peptide.
        J Neurochem. 2000; 74: 847-859
        • Brown R.C.
        • Han Z.
        • Cascio C.
        • Papadopoulos V.
        Oxidative stress-mediated DHEA formation in Alzheimer’s disease pathology.
        Neurobiol Aging. 2003; 24: 57-65
        • Cardounel A.
        • Regelson W.
        • Kalimi M.
        Dehydroepiandrosterone protects hippocampal neurons against neurotoxin-induced cell death: Mechanism of action.
        Proc Soc Exp Biol Med. 1999; 222: 145-149
        • Ciriza I.
        • Azcoitia I.
        • Garcia-Segura L.M.
        Reduced progesterone metabolites protect rat hippocampal neurones from kainic acid excitotoxicity in vivo.
        J Neuroendocrinol. 2004; 16: 58-63
        • Compagnone N.A.
        • Mellon S.H.
        Dehydroepiandrosterone: A potential signalling molecule for neocortical organization during development.
        Proc Natl Acad Sci USA. 1998; 95: 4678-4683
        • Corpechot C.
        • Robel P.
        • Axelson M.
        • Sjovall J.
        • Baulieu E.E.
        Characterization and measurement of dehydroepiandrosterone sulfate in rat brain.
        Proc Natl Acad Sci USA. 1981; 78: 4704-4707
        • Counterman A.E.
        • D’Onofrio T.G.
        • Andrews A.M.
        • Weiss P.S.
        From the Cover: A physical model of axonal damage due to oxidative stress.
        Proc Natl Acad Sci USA. 2006; 103: 5262-5266
        • Cutler R.G.
        • Kelly J.
        • Storie K.
        • Pedersen W.A.
        • Tammara A.
        • Hatanpaa K.
        • et al.
        Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease.
        Proc Natl Acad Sci USA. 2004; 101: 2070-2075
        • Debonnel G.
        • Bergeron R.
        • Monnet F.P.
        • De Montigny C.
        Differential effects of sigma ligands on the N-methyl-D-aspartate response in the CA1 and CA3 regions of the dorsal hippocampus: Effect of mossy fiber lesioning.
        Neuroscience. 1996; 71: 977-987
        • Djebaili M.
        • Guo Q.
        • Pettus E.H.
        • Hoffman S.W.
        • Stein D.G.
        The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats.
        J Neurotrauma. 2005; 22: 106-118
        • Djebaili M.
        • Hoffman S.W.
        • Stein D.G.
        Allopregnanolone and progesterone decrease cell death and cognitive deficits after a contusion of the rat pre-frontal cortex.
        Neuroscience. 2004; 123: 349-359
        • Dong E.
        • Matsumoto K.
        • Uzunova V.
        • Sugaya I.
        • Takahata H.
        • Nomura H.
        • et al.
        Brain 5alpha-dihydroprogesterone and allopregnanolone synthesis in a mouse model of protracted social isolation.
        Proc Natl Acad Sci USA. 2001; 98: 2849-2854
        • Ebner M.J.
        • Corol D.I.
        • Havlikova H.
        • Honour J.W.
        • Fry J.P.
        Identification of neuroactive steroids and their precursors and metabolites in adult male rat brain.
        Endocrinology. 2006; 147: 179-190
        • Flood J.F.
        • Morley J.E.
        • Roberts E.
        Memory-enhancing effects in male mice of pregnenolone and steroids metabolically derived from it.
        Proc Natl Acad Sci USA. 1992; 89: 1567-1571
        • Flood J.F.
        • Morley J.E.
        • Roberts E.
        Pregnenolone sulfate enhances post-training memory processes when injected in very low doses into limbic system structures: The amygdala is by far the most sensitive.
        Proc Natl Acad Sci USA. 1995; 92: 10806-10810
        • Francis P.T.
        The interplay of neurotransmitters in Alzheimer’s disease.
        CNS Spectr. 2005; 10: 6-9
        • Genazzani A.R.
        • Petraglia F.
        • Bernardi F.
        • Casarosa E.
        • Salvestroni C.
        • Tonetti A.
        • et al.
        Circulating levels of allopregnanolone in humans: Gender, age, and endocrine influences.
        J Clin Endocrinol Metab. 1998; 83: 2099-2103
        • Ghoumari A.M.
        • Ibanez C.
        • El-Etr M.
        • Leclerc P.
        • Eychenne B.
        • O’Malley B.W.
        • et al.
        Progesterone and its metabolites increase myelin basic protein expression in organotypic slice cultures of rat cerebellum.
        J Neurochem. 2003; 86: 848-859
        • Girdler S.S.
        • Straneva P.A.
        • Light K.C.
        • Pedersen C.A.
        • Morrow A.L.
        Allopregnanolone levels and reactivity to mental stress in premenstrual dysphoric disorder.
        Biol Psychiatry. 2001; 49: 788-797
        • Glantz L.A.
        • Lewis D.A.
        Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia.
        Arch of Gen Psych. 2000; 57: 65-73
        • Griffin L.D.
        • Gong W.
        • Verot L.
        • Mellon S.H.
        Niemann-Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone.
        Nat Med. 2004; 10: 704-711
        • Griffin L.D.
        • Mellon S.H.
        Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes.
        Proc Natl Acad Sci USA. 1999; 96: 13512-13517
        • Griffin L.D.
        • Mellon S.H.
        Biosynthesis of the neurosteroid 3 alpha-hydroxy-4-pregnen-20-one (3 alpha hp), a specific inhibitor of FSH release.
        Endocrinology. 2001; 142: 4617-4622
        • He J.
        • Hoffman S.W.
        • Stein D.G.
        Allopregnanolone, a progesterone metabolite, enhances behavioral recovery and decreases neuronal loss after traumatic brain injury.
        Restor Neurol Neurosci. 2004; 22: 19-31
        • Higashi T.
        • Daifu Y.
        • Ikeshima T.
        • Yagi T.
        • Shimada K.
        Studies on neurosteroids XV.
        J Pharm Biomed Anal. 2003; 30: 1907-1917
        • Hulette C.M.
        • Welsh-Bohmer K.A.
        • Crain B.
        • Szymanski M.H.
        • Sinclaire N.O.
        • Roses A.D.
        Rapid brain autopsy.
        Arch Pathol Lab Med. 1997; 121: 615-618
        • Hynd M.R.
        • Scott H.L.
        • Dodd P.R.
        Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease.
        Neurochem Int. 2004; 45: 583-595
        • Jellinger K.A.
        Head injury and dementia.
        Curr Opin Neurol. 2004; 17: 719-723
        • Jin L.W.
        • Shie F.S.
        • Maezawa I.
        • Vincent I.
        • Bird T.
        Intracellular accumulation of amyloidogenic fragments of amyloid-beta precursor protein in neurons with Niemann-Pick type C defects is associated with endosomal abnormalities.
        Am J Pathol. 2004; 164: 975-985
        • Karishma K.K.
        • Herbert J.
        Dehydroepiandrosterone (DHEA) stimulates neurogenesis in the hippocampus of the rat, promotes survival of newly formed neurons and prevents corticosterone-induced suppression.
        Eur J Neurosci. 2002; 16: 445-453
        • Kim S.B.
        • Hill M.
        • Kwak Y.T.
        • Hampl R.
        • Jo D.H.
        • Morfin R.
        Neurosteroids: Cerebrospinal fluid levels for Alzheimer’s disease and vascular dementia diagnostics.
        J Clin Endocrinol Metab. 2003; 88: 5199-5206
        • Kimonides V.G.
        • Khatibi N.H.
        • Svendsen C.N.
        • Sofroniew M.V.
        • Herbert J.
        Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity.
        Proc Natl Acad Sci USA. 1998; 95: 1852-1857
        • Kimonides V.G.
        • Spillantini M.G.
        • Sofroniew M.V.
        • Fawcett J.W.
        • Herbert J.
        Dehydroepiandrosterone antagonizes the neurotoxic effects of corticosterone and translocation of stress-activated protein kinase 3 in hippocampal primary cultures.
        Neuroscience. 1999; 89: 429-436
        • Korolainen M.A.
        • Goldsteins G.
        • Nyman T.A.
        • Alafuzoff I.
        • Koistinaho J.
        • Pirttila T.
        Oxidative modification of proteins in the frontal cortex of Alzheimer’s disease brain.
        Neurobiol Aging. 2006; 27: 42-53
        • Liere P.
        • Pianos A.
        • Eychenne B.
        • Cambourg A.
        • Liu S.
        • Griffiths W.
        • et al.
        Novel lipoidal derivatives of pregnenolone and dehydroepiandrosterone and absence of their sulfated counterparts in rodent brain.
        J Lipid Res. 2004; 45: 2287-2302
        • Lipton S.A.
        The molecular basis of memantine action in Alzheimer’s disease and other neurologic disorders: Low-affinity, uncompetitive antagonism.
        Curr Alzheimer Res. 2005; 2: 155-165
        • Liu S.
        • Sjovall J.
        • Griffiths W.J.
        Neurosteroids in rat brain: Extraction, isolation, and analysis by nanoscale liquid chromatography-electrospray mass spectrometry.
        Anal Chem. 2003; 75: 5835-5846
        • Lockhart E.M.
        • Warner D.S.
        • Pearlstein R.D.
        • Penning D.H.
        • Mehrabani S.
        • Boustany R.M.
        Allopregnanolone attenuates N-methyl-D-aspartate-induced excitotoxicity and apoptosis in the human NT2 cell line in culture.
        Neurosci Lett. 2002; 328: 33-36
        • Majewska M.D.
        • Harrison N.L.
        • Schwartz R.D.
        • Barker J.L.
        • Paul S.M.
        Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor.
        Science. 1986; 232: 1004-1007
        • Mariani E.
        • Polidori M.C.
        • Cherubini A.
        • Mecocci P.
        Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview.
        J Chromatogr B Analyt Technol Biomed Life Sci. 2005; 827: 65-75
        • Marx C.E.
        • Duncan G.E.
        • Gilmore J.H.
        • Lieberman J.A.
        • Morrow A.L.
        Olanzapine increases allopregnanolone in the rat cerebral cortex.
        Biol Psychiatry. 2000; 47: 1000-1004
      1. Marx CE, Shampine LJ, Khisti RT, Trost WT, Bradford DW, Grobin AC, et al (in press): Olanzapine and fluoxetine administration and coadministration increase rat hippocampal pregnenolone, allopregnanolone, and peripheral deoxycorticosterone: Implications for therapeutic actions. Pharmacol, Biochem, and Behav.

        • Marx C.E.
        • Stevens R.D.
        • Shampine L.J.
        • Uzunova V.
        • Trost W.T.
        • Butterfield M.I.
        • et al.
        Neuroactive steroids are altered in schizophrenia and bipolar disorder: Relevance to pathophysiology and therapeutics.
        Neuropsychopharmacology. 2006; 31: 1249-1263
        • Marx C.E.
        • VanDoren M.J.
        • Duncan G.E.
        • Lieberman J.A.
        • Morrow A.L.
        Olanzapine and clozapine increase the GABAergic neuroactive steroid allopregnanolone in rodents.
        Neuropsychopharmacology. 2003; 28: 1-13
        • Maurice T.
        • Su T.P.
        • Privat A.
        Sigma1 (sigma 1) receptor agonists and neurosteroids attenuate B25-35-amyloid peptide-induced amnesia in mice through a common mechanism.
        Neuroscience. 1998; 83: 413-428
        • Mellon S.H.
        • Griffin L.D.
        Synthesis, regulation, and function of neurosteroids.
        Endocr Res. 2002; 28: 463
        • Meunier J.
        • Maurice T.
        Beneficial effects of the sigma1 receptor agonists igmesine and dehydroepiandrosterone against learning impairments in rats prenatally exposed to cocaine.
        Neurotoxicol Teratol. 2004; 26: 783-797
        • Morrow A.L.
        • Pace J.R.
        • Purdy R.H.
        • Paul S.M.
        Characterization of steroid interactions with gamma-aminobutyric acid receptor-gated chloride ion channels: Evidence for multiple steroid recognition sites.
        Mol Pharmacol. 1990; 37: 263-270
        • Morrow A.L.
        • Suzdak P.D.
        • Paul S.M.
        Steroid hormone metabolites potentiate GABA receptor-mediated chloride ion flux with nanomolar potency.
        Eur J Pharmacol. 1987; 142: 483-485
        • Nemetz P.N.
        • Leibson C.
        • Naessens J.M.
        • Beard M.
        • Kokmen E.
        • Annegers J.F.
        • et al.
        Traumatic brain injury and time to onset of Alzheimer’s disease: A population-based study.
        Am J Epidemiol. 1999; 149: 32-40
        • Papassotiropoulos A.
        • Wollmer M.A.
        • Tsolaki M.
        • Brunner F.
        • Molyva D.
        • Lutjohann D.
        • et al.
        A cluster of cholesterol-related genes confers susceptibility for Alzheimer’s disease.
        J Clin Psychiatry. 2005; 66: 940-947
        • Paul S.M.
        • Purdy R.H.
        Neuroactive steroids.
        Faseb J. 1992; 6: 2311-2322
        • Pinna G.
        • Dong E.
        • Matsumoto K.
        • Costa E.
        • Guidotti A.
        In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine.
        PNAS. 2003; 100: 2035-2040
        • Prabakaran S.
        • Swatton J.E.
        • Ryan M.M.
        • Huffaker S.J.
        • Huang J.T.-J.
        • Griffin J.L.
        • et al.
        Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress.
        Molec Psychiatry. 2004; 9: 684-697
        • Puglielli L.
        • Tanzi R.E.
        • Kovacs D.M.
        Alzheimer’s disease: The cholesterol connection.
        Nat Neurosci. 2003; 6: 345-351
        • Purdy R.
        • Fitzgerald R.
        • Alomary A.
        • Parsons L.
        Practical neurochemistry: Methods.
        in: Baker G. 3rd ed. Handbook of Neurochemistry and Molecular Neurobiology. vol 18.. Springer, New York2006: 1-15
        • Purdy R.H.
        • Morrow A.L.
        • Blinn J.R.
        • Paul S.M.
        Synthesis, metabolism, and pharmacological activity of 3 alpha-hydroxy steroids which potentiate GABA-receptor-mediated chloride ion uptake in rat cerebral cortical synaptoneurosomes.
        J Med Chem. 1990; 33: 1572-1581
        • Ramassamy C.
        • Averill D.
        • Beffert U.
        • Bastianetto S.
        • Theroux L.
        • Lussier-Cacan S.
        • et al.
        Oxidative damage and protection by antioxidants in the frontal cortex of Alzheimer’s disease is related to the apolipoprotein E genotype.
        Free Radic Biol Med. 1999; 27: 544-553
        • Roberts E.
        • Bologa L.
        • Flood J.F.
        • Smith G.E.
        Effects of dehydroepiandrosterone and its sulfate on brain tissue in culture and on memory in mice.
        Brain Res. 1987; 406: 357-362
        • Rupprecht R.
        • Holsboer F.
        Neuroactive steroids: Mechanisms of action and neuropsychopharmacological perspectives.
        Trends Neurosci. 1999; 22: 410-416
        • Shobab L.A.
        • Hsiung G.Y.
        • Feldman H.H.
        Cholesterol in Alzheimer’s disease.
        Lancet Neurol. 2005; 4: 841-852
        • Shu H.J.
        • Eisenman L.N.
        • Jinadasa D.
        • Covey D.F.
        • Zorumski C.F.
        • Mennerick S.
        Slow actions of neuroactive steroids at GABAA receptors.
        J Neurosci. 2004; 24: 6667-6675
        • Smith C.D.
        • Wekstein D.R.
        • Markesbery W.R.
        • Frye C.A.
        3alpha,5alpha-THP: a potential plasma neurosteroid biomarker in Alzheimer’s disease and perhaps non-Alzheimer’s dementia.
        Psychopharmacology (Berl). 2005; : 1-5
        • Suzuki M.
        • Wright L.S.
        • Marwah P.
        • Lardy H.A.
        • Svendsen C.N.
        Mitotic and neurogenic effects of dehydroepiandrosterone (DHEA) on human neural stem cell cultures derived from the fetal cortex.
        Proc Natl Acad Sci USA. 2004; 101: 3202-3207
        • Torrey E.F.
        • Barci B.M.
        • Webster M.J.
        • Bartko J.J.
        • Meador-Woodruff J.H.
        • Knable M.B.
        Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains.
        Biol Psychiatry. 2005; 57: 252-260
        • Treiber-Held S.
        • Distl R.
        • Meske V.
        • Albert F.
        • Ohm T.G.
        Spatial and temporal distribution of intracellular free cholesterol in brains of a Niemann-Pick type C mouse model showing hyperphosphorylated tau protein.
        J Pathol. 2003; 200: 95-103
        • Tunez I.
        • Munoz M.C.
        • Montilla P.
        Treatment with dehydroepiandrosterone prevents oxidative stress induced by 3-nitropropionic acid in synaptosomes.
        Pharmacology. 2005; 74: 113-118
        • Uzunov D.P.
        • Cooper T.B.
        • Costa E.
        • Guidotti A.
        Fluoxetine-elicited changes in brain neurosteroid content measured by negative ion mass fragmentography.
        Proc Natl Acad Sci USA. 1996; 93: 12599-12604
        • Uzunova V.
        • Sheline Y.
        • Davis J.M.
        • Rasmusson A.
        • Uzunov D.P.
        • Costa E.
        • et al.
        Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine.
        Proc Natl Acad Sci USA. 1998; 95: 3239-3244
        • Vallee M.
        • Mayo W.
        • Darnaudery M.
        • Corpechot C.
        • Young J.
        • Koehl M.
        • et al.
        Neurosteroids: Deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus.
        Proc Natl Acad Sci USA. 1997; 94: 14865-14870
        • Vallee M.
        • Purdy R.H.
        • Mayo W.
        • Koob G.F.
        • Le Moal M.
        Neuroactive steroids: New biomarkers of cognitive aging.
        J Steroid Biochem Mol Biol. 2003; 85: 329-335
        • Vance J.E.
        • Hayashi H.
        • Karten B.
        Cholesterol homeostasis in neurons and glial cells.
        Semin Cell Dev Biol. 2005; 16: 193-212
        • Wang J.M.
        • Johnston P.B.
        • Ball B.G.
        • Brinton R.D.
        The neurosteroid allopregnanolone promotes proliferation of rodent and human neural progenitor cells and regulates cell-cycle gene and protein expression.
        J Neurosci. 2005; 25: 4706-4718
        • Weill-Engerer S.
        • David J.P.
        • Sazdovitch V.
        • Liere P.
        • Eychenne B.
        • Pianos A.
        • et al.
        Neurosteroid quantification in human brain regions: Comparison between Alzheimer’s and nondemented patients.
        J Clin Endocrinol Metab. 2002; 87: 5138-5143
        • Wenk G.
        Neuropathologic changes in Alzheimer’s disease: Potential targets for treatment.
        J Clin Psychiatry. 2006; 67: 3-7
        • Wolf O.T.
        • Kirschbaum C.
        Actions of dehydroepiandrosterone and its sulfate in the central nervous system: Effects on cognition and emotion in animals and humans.
        Brain Res Brain Res Rev. 1999; 30: 264-288
        • Wolkowitz O.M.
        • Kramer J.H.
        • Reus V.I.
        • Costa M.M.
        • Yaffe K.
        • Walton P.
        • et al.
        DHEA treatment of Alzheimer’s disease: A randomized, double-blind, placebo-controlled study.
        Neurology. 2003; 60: 1071-1076
        • Wolozin B.
        Cholesterol and the biology of Alzheimer’s disease.
        Neuron. 2004; 41: 7-10
        • Yu W.
        • Ko M.
        • Yanagisawa K.
        • Michikawa M.
        Neurodegeneration in heterozygous Niemann-Pick type C1 (NPC1) mouse: Implication of heterozygous NPC1 mutations being a risk for tauopathy.
        J Biol Chem. 2005; 280: 27296-27302