Advertisement
Original article| Volume 60, ISSUE 11, P1259-1267, December 01, 2006

Download started.

Ok

Alterations in Medial Prefrontal Cortical Activity and Plasticity in Rats with Disruption of Cortical Development

  • Yukiori Goto
    Correspondence
    Address reprint requests to Yukiori Goto, Ph.D., Department of Neuroscience, University of Pittsburgh, 446 Crawford Hall, Pittsburgh, PA 15260.
    Affiliations
    Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania.
    Search for articles by this author
  • Anthony A. Grace
    Affiliations
    Departments of Neuroscience, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania.
    Search for articles by this author
Published:September 04, 2006DOI:https://doi.org/10.1016/j.biopsych.2006.05.046

      Background

      Psychiatric disorders such as schizophrenia are believed to emerge from an interaction of several factors. Thus, a genetic predisposition can lead to developmental compromises that may leave the system more susceptible to deficits induced by subsequent environmental variables such as stress.

      Methods

      The impact of neurodevelopmental interruption induced by exposure of rats prenatally to a compound methylazoxymethanol acetate (MAM) that disrupts neuronal proliferation was investigated using in vivo electrophysiologic recordings from the prefrontal cortex of adult rats.

      Results

      Prenatal exposure to MAM resulted in alterations in the medial prefrontal cortex indicative of a compromise in information processing. Specifically, we observed a disruption in activity patterns consistent with deficits in neuronal synchronization and abnormal augmentation of synaptic plasticity that was more severely disrupted by stress exposure than in normal animals. Furthermore, these deficits could be reversed by manipulating the mesocortical dopamine system.

      Conclusions

      These results suggest that disruption of early cortical development causes impairments in medial prefrontal cortical function at adulthood that are more vulnerable to disruptive influences, despite the presence of only subtle structural alterations in the brain.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Andersen S.L.
        • Gazzara R.A.
        Effects of (-)-sulpiride on dopamine release in striatum of developing rats: Degree of depolarization influences responsiveness.
        J Neurochem. 1996; 67: 1931-1937
        • Balduini W.
        • Lombardelli G.
        • Peruzzi G.
        • Cattabeni F.
        Treatment with methylazoxymethanol at different gestational days: Physical, reflex development and spontaneous activity in the offspring.
        Neurotoxicology. 1991; 12: 179-188
        • Bennay M.
        • Gernert M.
        • Schwabe K.
        • Enkel T.
        • Koch M.
        Neonatal medial prefrontal cortex lesion enhances the sensitivity of the mesoaccumbal dopamine system.
        Eur J Neurosci. 2004; 19: 3277-3290
        • Bhumbra G.S.
        • Dyball R.E.
        Measuring spike coding in the rat supraoptic nucleus.
        J Physiol. 2004; 555: 281-296
        • Bissiere S.
        • Humeau Y.
        • Luthi A.
        Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition.
        Nat Neurosci. 2003; 6: 587-592
        • Boksa P.
        • El-Khodor B.F.
        Birth insult interacts with stress at adulthood to alter dopaminergic function in animal models: Possible implications for schizophrenia and other disorders.
        Neurosci Biobehav Rev. 2003; 27: 91-101
        • Calabresi P.
        • Maj R.
        • Pisani A.
        • Mercuri N.B.
        • Bernardi G.
        Long-term synaptic depression in the striatum: Physiological and pharmacological characterization.
        J Neurosci. 1992; 12: 4224-4233
        • Castro P.A.
        • Cooper E.C.
        • Lowenstein D.H.
        • Baraban S.C.
        Hippocampal heterotopia lack functional Kv4.2 potassium channels in the methylazoxymethanol model of cortical malformations and epilepsy.
        J Neurosci. 2001; 21: 6626-6634
        • Cattabeni F.
        • Di Luca M.
        Developmental models of brain dysfunctions induced by targeted cellular ablations with methylazoxymethanol.
        Physiol Rev. 1997; 77: 199-215
        • Chevassus-Au-Louis N.
        • Congar P.
        • Represa A.
        • Ben-Ari Y.
        • Gaiarsa J.L.
        Neuronal migration disorders: Heterotopic neocortical neurons in CA1 provide a bridge between the hippocampus and the neocortex.
        Proc Natl Acad Sci U S A. 1998; 95: 10263-10268
        • de Brabander J.M.
        • de Bruin J.P.
        • van Eden C.G.
        Comparison of the effects of neonatal and adult medial prefrontal cortex lesions on food hoarding and spatial delayed alternation.
        Behav Brain Res. 1991; 42: 67-75
        • Dronjak S.
        • Gavrilovic L.
        • Filipovic D.
        • Radojcic M.B.
        Immobilization and cold stress affect sympatho-adrenomedullary system and pituitary-adrenocortical axis of rats exposed to long-term isolation and crowding.
        Physiol Behav. 2004; 81: 409-415
        • Duffy J.D.
        • Campbell 3rd, J.J.
        The regional prefrontal syndromes: A theoretical and clinical overview.
        J Neuropsychiatry Clin Neurosci. 1994; 6: 379-387
        • Engel A.K.
        • Fries P.
        • Singer W.
        Dynamic predictions: Oscillations and synchrony in top-down processing.
        Nat Rev Neurosci. 2001; 2: 704-716
        • Engel A.K.
        • Singer W.
        Temporal binding and the neural correlates of sensory awareness.
        Trends Cogn Sci. 2001; 5: 16-25
        • Ferrer I.
        • Pozas E.
        • Marti M.
        • Blanco R.
        • Planas A.M.
        Methylazoxymethanol acetate-induced apoptosis in the external granule cell layer of the developing cerebellum of the rat is associated with strong c-Jun expression and formation of high molecular weight c-Jun complexes.
        J Neuropathol Exp Neurol. 1997; 56: 1-9
        • Flagstad P.
        • Mork A.
        • Glenthoj B.Y.
        • Van Beek J.
        • Michael-Titus A.T.
        • Didriksen M.
        Disruption of neurogenesis on gestational day 17 in the rat causes behavioral changes relevant to positive and negative schizophrenia symptoms and alters amphetamine-induced dopamine release in nucleus accumbens.
        Neuropsychopharmacology. 2004; 29: 2052-2064
        • Flores G.
        • Wood G.K.
        • Liang J.J.
        • Quirion R.
        • Srivastava L.K.
        Enhanced amphetamine sensitivity and increased expression of dopamine D2 receptors in postpubertal rats after neonatal excitotoxic lesions of the medial prefrontal cortex.
        J Neurosci. 1996; 16: 7366-7375
        • Garcia R.
        Stress, synaptic plasticity, and psychopathology.
        Rev Neurosci. 2002; 13: 195-208
        • Goldman-Rakic P.S.
        The physiological approach: Functional architecture of working memory and disordered cognition in schizophrenia.
        Biol Psychiatry. 1999; 46: 650-661
        • Gorelova N.A.
        • Yang C.R.
        Dopamine D1/D5 receptor activation modulates a persistent sodium current in rat prefrontal cortical neurons in vitro.
        J Neurophysiol. 2000; 84: 75-87
        • Goto Y.
        • Grace A.A.
        Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior.
        Nat Neurosci. 2005; 8: 805-812
        • Goto Y.
        • O’Donnell P.
        Delayed mesolimbic system alteration in a developmental animal model of schizophrenia.
        J Neurosci. 2002; 22: 9070-9077
        • Gourevitch R.
        • Rocher C.
        • Le Pen G.
        • Krebs M.O.
        • Jay T.M.
        Working memory deficits in adult rats after prenatal disruption of neurogenesis.
        Behav Pharmacol. 2004; 15: 287-292
        • Grab D.J.
        • Zedeck M.S.
        • Swislocki N.I.
        • Sonenberg M.
        In vitro synthesis of RNA with “aggregate” enzyme, chromatin, and DNA from liver of methylazoxymethanol acetate-treated rats.
        Chem Biol Interact. 1973; 6: 259-267
        • Grace A.A.
        • Bunney B.S.
        The control of firing pattern in nigral dopamine neurons: Burst firing.
        J Neurosci. 1984; 4: 2877-2890
        • Grace A.A.
        Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia.
        Neuroscience. 1991; 41: 1-24
        • Greengard P.
        • Nairn A.C.
        • Girault J.A.
        • Ouimet C.C.
        • Snyder G.L.
        • Fisone G.
        • et al.
        The DARPP–32/protein phosphatase–1 cascade: a model for signal integration.
        Brain Res Brain Res Rev. 1998; 26: 274-284
        • Gulledge A.T.
        • Jaffe D.B.
        Dopamine decreases the excitability of layer V pyramidal cells in the rat prefrontal cortex.
        J Neurosci. 1998; 18: 9139-9151
        • Gurden H.
        • Takita M.
        • Jay T.M.
        Essential role of D1 but not D2 receptors in the NMDA receptor-dependent long-term potentiation at hippocampal-prefrontal cortex synapses in vivo.
        J Neurosci. 2000; 20: RC106
        • Haddad R.K.
        • Rabe A.
        • Dumas R.
        Comparison of effects of methylazoxymethanol acetate on brain development in different species.
        Fed Proc. 1972; 31: 1520-1523
        • Halasz G.
        • Vance A.L.
        Attention deficit hyperactivity disorder in children: Moving forward with divergent perspectives.
        Med J Aust. 2002; 177: 554-557
        • Harrison P.J.
        Schizophrenia: A disorder of neurodevelopment?.
        Curr Opin Neurobiol. 1997; 7: 285-289
        • Henze D.A.
        • Gonzalez-Burgos G.R.
        • Urban N.N.
        • Lewis D.A.
        • Barrionuevo G.
        Dopamine increases excitability of pyramidal neurons in primate prefrontal cortex.
        J Neurophysiol. 2000; 84: 2799-2809
        • Huang Y.Y.
        • Simpson E.
        • Kellendonk C.
        • Kandel E.R.
        Genetic evidence for the bidirectional modulation of synaptic plasticity in the prefrontal cortex by D1 receptors.
        Proc Natl Acad Sci U S A. 2004; 101: 3236-3241
        • Jackson M.E.
        • Homayoun H.
        • Moghaddam B.
        NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex.
        Proc Natl Acad Sci U S A. 2004; 101: 8467-8472
        • Kaiser J.
        • Lutzenberger W.
        Induced gamma-band activity and human brain function.
        Neuroscientist. 2003; 9: 475-484
        • Kolb B.
        • Petrie B.
        • Cioe J.
        Recovery from early cortical damage in rats, VII.
        Behav Brain Res. 1996; 79: 1-14
        • Lafarga M.
        • Lerga A.
        • Andres M.A.
        • Polanco J.I.
        • Calle E.
        • Berciano M.T.
        Apoptosis induced by methylazoxymethanol in developing rat cerebellum: Organization of the cell nucleus and its relationship to DNA and rRNA degradation.
        Cell Tissue Res. 1997; 289: 25-38
        • Lavin A.
        • Moore M.H.
        • Grace A.A.
        Prenatal disruption of neocortical development alters prefrontal cortical neuron responses to dopamine in adult rats.
        Neuropsychopharmacology. 2005; 30: 1426-1435
        • Lewis B.L.
        • O’Donnell P.
        Ventral tegmental area afferents to the prefrontal cortex maintain membrane potential “up” states in pyramidal neurons via D(1) dopamine receptors.
        Cereb Cortex. 2000; 10: 1168-1175
        • Lidow M.S.
        • Williams G.V.
        • Goldman-Rakic P.S.
        The cerebral cortex: A case for a common site of action of antipsychotics.
        Trends Pharmacol Sci. 1998; 19: 136-140
        • Lipska B.K.
        • Weinberger D.R.
        To model a psychiatric disorder in animals: Schizophrenia as a reality test.
        Neuropsychopharmacology. 2000; 23: 223-239
        • Matsuda Y.
        • Marzo A.
        • Otani S.
        The presence of background dopamine signal converts long term synaptic depression to potentiation in rat prefrontal cortex.
        J Neurosci. 2006; 26: 4803-4810
        • Maroun M.
        • Richter-Levin G.
        Exposure to acute stress blocks the induction of long-term potentiation of the amygdala-prefrontal cortex pathway in vivo.
        J Neurosci. 2003; 23: 4406-4409
      1. Moore H, Jentsch JD, Ghajarnia M, Geyer MA, Grace AA (in press): A neurobiological systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: Implication for the neuropathology of schizophrenia. Biol Psychiatry.

        • Moore H.
        • West A.R.
        • Grace A.A.
        The regulation of forebrain dopamine transmission: Relevance to the pathophysiology and psychopathology of schizophrenia.
        Biol Psychiatry. 1999; 46: 40-55
        • O’Donnell P.
        • Lewis B.L.
        • Weinberger D.R.
        • Lipska B.K.
        Neonatal hippocampal damage alters electrophysiological properties of prefrontal cortical neurons in adult rats.
        Cereb Cortex. 2002; 12: 975-982
        • Ornitz E.M.
        • Ritvo E.R.
        The syndrome of autism: a critical review.
        Am J Psychiatry. 1976; 133: 609-621
        • Otani S.
        • Blond O.
        • Desce J.M.
        • Crepel F.
        Dopamine facilitates long-term depression of glutamatergic transmission in rat prefrontal cortex.
        Neuroscience. 1998; 85: 669-676
        • Otmakhova N.A.
        • Lisman J.E.
        Dopamine selectively inhibits the direct cortical pathway to the CA1 hippocampal region.
        J Neurosci. 1999; 19: 1437-1445
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotaxic Coordinates. 4th ed. Academic Press, San Diego, CA1998
        • Rocher C.
        • Spedding M.
        • Munoz C.
        • Jay T.M.
        Acute stress-induced changes in hippocampal/prefrontal circuits in rats: Effects of antidepressants.
        Cereb Cortex. 2004; 14: 224-229
        • Seamans J.K.
        • Gorelova N.
        • Durstewitz D.
        • Yang C.R.
        Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons.
        J Neurosci. 2001; 21: 3628-3638
        • Selemon L.D.
        • Wang L.
        • Nebel M.B.
        • Csernansky J.G.
        • Goldman-Rakic P.S.
        • Rakic P.
        Direct and indirect effects of fetal irradiation on cortical gray and white matter volume in the macaque.
        Biol Psychiatry. 2005; 57: 83-90
        • Singh S.C.
        Deformed dendrites and reduced spine numbers on ectopic neurones in the hippocampus of rats exposed to methylazoxymethanol-acetate.
        Acta Neuropathol (Berl). 1980; 49: 193-198
        • Squire L.R.
        Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans.
        Psychol Rev. 1992; 99: 195-231
        • Steriade M.
        • Nuñez A.
        • Amzica F.
        Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram.
        J Neurosci. 1993; 13: 3266-3283
        • Talamini L.M.
        • Koch T.
        • Luiten P.G.
        • Koolhaas J.M.
        • Korf J.
        Interruptions of early cortical development affect limbic association areas and social behaviour in rats; possible relevance for neurodevelopmental disorders.
        Brain Res. 1999; 847: 105-120
        • Thierry A.M.
        • Blanc G.
        • Sobel A.
        • Stinus L.
        • Golwinski J.
        Dopaminergic terminals in the rat cortex.
        Science. 1973; 182: 499-501
        • Traub R.D.
        • Spruston N.
        • Soltesz I.
        • Konnerth A.
        • Whittington M.A.
        • Jefferys G.R.
        Gamma-frequency oscillations: A neuronal population phenomenon, regulated by synaptic and intrinsic cellular processes, and inducing synaptic plasticity.
        Prog Neurobiol. 1998; 55: 563-575
        • Tseng K.Y.
        • O’Donnell P.
        Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms.
        J Neurosci. 2004; 24: 5131-5139
        • Weinberger D.R.
        Implications of normal brain development for the pathogenesis of schizophrenia.
        Arch Gen Psychiatry. 1987; 44: 660-669
        • West A.R.
        • Grace A.A.
        Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: Studies combining in vivo intracellular recordings and reverse microdialysis.
        J Neurosci. 2002; 22: 294-304