Advertisement
Original Article| Volume 62, ISSUE 3, P256-261, August 01, 2007

Download started.

Ok

Frontostriatal Dysfunction During Response Inhibition in Williams Syndrome

Published:September 25, 2006DOI:https://doi.org/10.1016/j.biopsych.2006.05.041

      Background

      Williams syndrome (WS) has provided researchers with an exciting opportunity to understand the complex interplay among genes, neurobiological and cognitive functions. However, despite a well-characterized cognitive and behavioral phenotype, little attention has been paid to the marked deficits in social and behavioral inhibition. Here we explore the neural systems that mediate response inhibition in WS.

      Methods

      We used functional MRI (fMRI) to obtain blood oxygenation level dependence (BOLD) signal maps during the performance of a Go/NoGo response inhibition task from 11 clinically and genetically diagnosed WS patients and 11 age- and gender-matched typically developing (TD) control subjects. Correlations between behavioral, neuropsychological measures, and BOLD signal were also conducted.

      Results

      Although TD control subjects showed significantly faster response times, no group differences in behavioral accuracy were observed. Compared with control subjects, WS participants demonstrated significantly reduced activity in the striatum, dorsolateral prefrontal, and dorsal anterior cingulate cortices. These findings support the hypothesis that persons with WS fail to activate critical cortical and subcortical structures involved in behavioral inhibition.

      Conclusions

      Our results provide important evidence for reduced engagement of the frontostriatal circuits in WS and provide putative biological markers for the deficits in response inhibition and the unusual social phenotype.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alexander G.E.
        • DeLong M.R.
        • Strick P.L.
        Parallel organization of functionally segregated circuits linking basal ganglia and cortex.
        Annu Rev Neurosci. 1986; 9: 357-381
        • Aron A.R.
        • Fletcher P.C.
        • Bullmore E.T.
        • Sahakian B.J.
        • Robbins T.W.
        Stop-signal inhibition disprutped by damage to the right inferior frontal gyrus in human.
        Nat Neurosci. 2003; 6 ([Erratum in Nat Neurosci (2003) 6:1329]): 115-116
        • Aron A.R.
        • Poldrack R.A.
        The cognitive neuroscience of response inhibition: relevance for genetic research in attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2005; 57: 1285-1292
        • Aron A.R.
        • Robbins T.W.
        • Poldrack R.A.
        Inhibition and the right inferior frontal cortex.
        Trends Cogn Sci. 2004; 4: 170-177
        • Aron A.R.
        • Schlaghecken F.
        • Fletcher P.C.
        • Bullmore E.T.
        • Eimer M.
        • Barker R.
        • et al.
        Inhibition of subliminally primed responses is mediated by the caudate and thalamus: Evidence from functional MRI and Huntington’s disease.
        Brain. 2003; 126: 713-723
        • Atkinson J.
        • Braddick O.
        • Anker S.
        • Curran W.
        • Andrew R.
        • Wattam-Bell J.
        • Braddick F.
        Neurobiological models of visuospatial cognition in children with Williams syndrome: Measures of dorsal-stream and frontal function.
        Dev Neuropsychol. 2003; 23: 139-172
        • Bellugi U.
        • Lichtenberger L.
        • Jones W.
        • Lai Z.
        • St George M.
        I.
        J Cogn Neurosci. 2000; 12: 7-29
        • Botvinick M.M.
        • Cohen J.D.
        • Carter C.S.
        Conflict monitoring and anterior cingulate cortex, an update.
        Trends Cogn Sci. 2004; 8: 539-546
        • Carrasco X.
        • Castillo S.
        • Aravena T.
        • Rothhammer P.
        • Aboitiz F.
        Williams syndrome: Pediatric, neurologic, and cognitive development.
        Pediatr Neurol. 2005; 32: 166-172
        • Castellanos F.X.
        • Lee P.P.
        • Sharp W.
        • Jeffries N.O.
        • Greenstein D.K.
        • Clasen L.S.
        • et al.
        Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder.
        JAMA. 2002; 288: 1740-1748
        • Cavanna A.E.
        • Trimble M.R.
        The precuneus: A review of its functional anatomy and behavioural correlates.
        Brain. 2006; 129: 564-583
        • Chamberlain S.R.
        • Müller U.
        • Blackwell A.D.
        • Clark L.
        • Robbins T.W.
        • Sahakian B.J.
        Neurochemical modulation of response inhibition and probabilistic learning in humans.
        Science. 2006; 10: 861-863
        • Cohan J.D.
        • MacWhinney B.
        • Flatt M.
        • Provost J.
        Psyscope: An interactive graphic system for designing and controlling experiments in the psychology laboratory using Macintosh computers.
        Behav Res Methods Instr Computers. 1993; 25: 257-271
        • Derogatis L.R.
        SCL—90: Administration, scoring, and procedures manual. Vol. 1. Johns Hopkins University, Clinical Psychometrics Research Unit, Baltimore1977
      1. Eckert MA, Tenforde A, Galaburda AM, Bellugi U, Korenberg JR, Mills D, Reiss AL (in press): To modulate or not to modulate: Differing results in uniquely shaped Williams syndrome brains. NeuroImage.

        • Einfield S.L.
        • Tonge B.J.
        • Florio T.
        Behavioral and emotional disturbances in individuals with Williams syndrome.
        Am J Ment Retard. 1997; 102: 45-53
        • Ewart A.K.
        • Morris C.A.
        • Atkinson D.
        • et al.
        Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome.
        Nat Genet. 1993; 5: 11-16
        • Frigerio E.
        • Burt D.M.
        • Gagliardi C.
        • Cioffi G.
        • Martelli S.
        • Perrett D.I.
        • Borgatti R.
        Is everybody always my friend?.
        Neuropsycholgia. 2006; 44: 254-259
        • Galaburda A.M.
        • Bellugi U.
        V.
        J Cogn Neurosci. 2000; 12: 74-88
        • Garavan H.
        • Ross T.J.
        • Stein E.A.
        Right hemispheric dominance of inhibitory control: An event-related functional MRI study.
        Proc Natl Acad Sci USA. 1999; 96: 8301-8306
        • Jones W.
        • Bellugi U.
        • Lai Z.
        • Chiles M.
        • Reilly J.
        • Lincoln A.
        • Adolphs R.
        II.
        J Cogn Neurosci. 2000; 12: 30-46
        • Howlin P.
        • Udwin O.
        Outcome in adult life for people with Williams syndrome—results from a survey of 239 families.
        J Intellect Disabil Res. 2006; 50: 151-160
        • Iversen S.D.
        • Mishkin M.
        Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity.
        Exp Brain Res. 1970; 11: 376-386
        • King-Casas B.
        • Tomlin D.
        • Anen C.
        • Camerer C.F.
        • Quartz S.R.
        • Montague P.R.
        Getting to know you: Reputation and trust in a two-person economic exchange.
        Science. 2005; 308: 78-83
        • Kippenhan J.S.
        • Olsen R.K.
        • Mervis C.B.
        • Morris C.A.
        • Kohn P.
        • Meyer-Lindenberg A.
        • Berman K.F.
        Genetic contributions to human gyrification: Sulcal morphometry in Williams syndrome.
        J Neurosci. 2005; 25: 7840-7846
        • Korenberg J.R.
        • Chen X.N.
        • Hirota H.
        • Lai Z.
        • Bellugi U.
        • Burian D.
        • et al.
        VI.
        J Cogn Neurosci. 2000; 12: 89-107
        • Li C.S.
        • Huang C.
        • Constable R.T.
        • Sinha R.
        Imaging response inhibition in a stop-signal task: neural correlates independent of signal monitoring and post-response processing.
        J Neurosci. 2006; 26: 186-192
        • Liston C.
        • Watts R.
        • Tottenham N.
        • Davidson M.C.
        • Niogi S.
        • Ulug AM Casey B.J.
        Frontostriatal microstructure modulates efficient recruitment of cognitive control.
        Cereb Cortex. 2006; 16: 553-560
        • Logothetis N.K.
        • Pauls J.
        • Augath M.
        • Trinath T.
        • Oeltermann A.
        Neurophysiological investigation of the basis of the fMRI signal.
        Nature. 2001; 412: 150-157
        • MacDonald A.W.
        • Cohen J.D.
        • Stenger V.A.
        • Carter C.S.
        Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control.
        Science. 2000; 288: 1835-1838
        • Masterman D.L.
        • Cummings J.L.
        Frontal-subcortical circuits: The anatomic basis of executive, social and motivated behaviors.
        J Psychopharmacol. 1997; 11: 107-114
        • Menon V.
        • Leroux J.
        • White C.D.
        • Reiss A.L.
        Frontostriatal deficits in fragile X syndrome: relation to FMR1 gene expression.
        Proc Natl Acad Sci USA. 2004; 101: 3615-3620
        • Mervis C.B.
        • Robinson B.F.
        • Bertrand J.
        • Morris C.A.
        • Klein-Tasman B.P.
        • Armstrong S.C.
        The Williams syndrome cognitive profile.
        Brain Cogn. 2000; 44: 604-628
        • Meyer-Lindenberg A.
        • Hariri A.R.
        • Munoz K.E.
        • Mervis C.B.
        • Mattay V.S.
        • Morris C.A.
        • Berman K.F.
        Neural correlates of genetically abnormal social cognition in Williams syndrome.
        Nat Neurosci. 2005; 8: 991-993
        • Meyer-Lindenberg A.
        • Kohn P.
        • Mervis C.B.
        • Kippenhan S.
        • Olsen R.
        • Morris C.A.
        • Berman K.F.
        Neural basis of genetically determined visuospatial construction deficit in Williams syndrome.
        Neuron. 2004; 43: 623-631
        • Middleton F.A.
        • Strick P.L.
        Basal ganglia output and cognition: Evidence from anatomical, behavioral, and clinical studies.
        Brain Cogn. 2000; 42: 183-200
        • Middleton F.A.
        • Strick P.L.
        Basal-ganglia “projections” to the prefrontal cortex of the primate.
        Cereb Cortex. 2002; 12: 926-935
        • Minamimoto T.
        • Hori Y.
        • Kimura M.
        Complementary process to response bias in the centromedian nucleus of the thalamus.
        Science. 2005; 308: 1798-1801
        • Mobbs D.
        • Garrett A.S.
        • Menon V.
        • Rose F.
        • Bellugi U.
        • Reiss A.L.
        Anomalous brain activation during face and gaze processing in Williams syndrome.
        Neurology. 2004; 62: 2070-2076
        • Monchi O.
        • Petrides M.
        • Strafella A.P.
        • Worsley K.J.
        • Doyon J.
        Functional role of the basal ganglia in the planning and execution of actions.
        Ann Neurol. 2006; 59: 257-264
        • Oldfield R.C.
        The assessment and analysis of handedness: the Edinburgh inventory.
        Neuropsychologia. 1971; 9: 97-113
        • Owen A.M.
        • Doyon J.
        • Dagher A.
        • Sadikot A.
        • Evans A.C.
        Abnormal basal ganglia outflow in Parkinson’s disease identified with PET.
        Brain. 1998; 121: 949-965
        • Parvizi J.
        • Van Hoesen G.W.
        • Buckwalter J.
        • Damasio A.
        Neural connections of the posteromedial cortex in the macaque.
        Proc Natl Acad Sci USA. 2006; 103: 1563-1568
        • Reiss A.L.
        • Eckert M.A.
        • Rose F.E.
        • Karchemskiy A.
        • Kesler S.
        • Chang M.
        • et al.
        An experiment of nature: Brain anatomy parallels cognition and behavior in Williams syndrome.
        J Neurosci. 2004; 24: 5009-5015
        • Rubia K.
        • Smith A.B.
        • Brammer M.J.
        • Toone B.
        • Taylor E.
        Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD.
        Am J Psychiatry. 2005; 162: 1067-1075
        • Schmitt J.E.
        • Eliez S.
        • Bellugi U.
        • Reiss A.L.
        Analysis of cerebral shape in Williams syndrome.
        Arch Neurol. 2001; 58: 283-287
        • Schmitt J.E.
        • Watts K.
        • Eliez S.
        • Bellugi U.
        • Galaburda A.M.
        • Reiss A.L.
        Increased gyrification in Williams syndrome: Evidence using 3D MRI methods.
        Dev Med Child Neurol. 2002; 44: 292-295
        • Sergeant J.
        The cognitive-energetic model: an empirical approach to attention-deficit hyperactivity disorder.
        Neurosci Biobehav Rev. 2000; 24: 7-12
        • Shafritz K.M.
        • Collins S.H.
        • Blumberg H.P.
        The interaction of emotional and cognitive neural systems in emotionally guided response inhibition.
        Neuroimage. 2006; 15: 468-475
        • Thompson P.M.
        • Lee A.D.
        • Dutton R.A.
        • Geaga J.A.
        • Hayashi K.M.
        • Eckert M.A.
        • et al.
        Abnormal cortical complexity and thickness profiles mapped in Williams syndrome.
        J Neurosci. 2005; 25: 4146-4158
        • Tomc S.A.
        • Williamson N.K.
        • Pauli R.M.
        Temperament in Williams syndrome.
        Am J Med Genet. 1990; 3: 345-352
        • van den Heuvel O.A.
        • Veltman D.J.
        • Groenewegen H.J.
        • Cath D.C.
        • van Balkom A.J.
        • van Hartskamp J.
        • et al.
        Frontal-striatal dysfunction during planning in obsessive-compulsive disorder.
        Arch Gen Psychiatry. 2005; 62: 301-309
        • van den Heuvel O.A.
        • Veltman D.J.
        • Groenewegen H.J.
        • Witter M.P.
        • Merkelbach J.
        • Cath D.C.
        • et al.
        Disorder-specific neuroanatomical correlates of attentional bias in obsessive-compulsive disorder, panic disorder, and hypochondriasis.
        Arch Gen Psychiatry. 2005; 62: 922-933
        • Vink M.
        • Kahn R.S.
        • Raemaekers M.
        • van den Heuvel M.
        • Boersma M.
        • Ramsey N.F.
        Function of striatum beyond inhibition and execution of motor responses.
        Hum Brain Mapp. 2005; 25: 336-344