Advertisement

Fine-Tuning of Awake Prefrontal Cortex Neurons by Clozapine: Comparison With Haloperidol and N-Desmethylclozapine

      Background

      Mechanisms underlying clozapine’s better clinical efficacy in schizophrenia remain poorly understood. The prefrontal cortex (PFC) has been implicated as a primary site for the therapeutic effects of clozapine; however, evidence for how clozapine influences the activity of PFC neurons in behaviorally relevant contexts is lacking.

      Methods

      Ensemble single unit recording in awake rats was used to measure the activity of PFC neurons in response to clozapine, its main metabolite N-desmethylclozapine (DMClz), and the typical antipsychotic drug haloperidol during baseline conditions and after treatment with the N-methyl-D-aspartate antagonist MK801. Behavioral stereotypy was scored during recording.

      Results

      Clozapine and DMClz but not haloperidol had an activity-dependent influence on spontaneous firing rate of PFC cells: they increased the activity of neurons with low baseline firing rates and decreased the activity of neurons with higher firing rates. Clozapine and DMClz but not haloperidol also reversed the effect of MK801 on PFC neuronal firing. This reversal was strongly correlated with blockade of MK801-induced behavioral stereotypy.

      Conclusions

      These findings indicate that clozapine has the capacity to fine-tune spontaneous and disrupted activity of PFC neurons. This effect might contribute, in part, to the therapeutic efficacy of clozapine in schizophrenia.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adams B.
        • Moghaddam B.
        Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine.
        J Neurosci. 1998; 18: 5545-5554
        • Arango C.
        • Breier A.
        • McMahon R.
        • Carpenter W.J.
        • Buchanan R.
        The relationship of clozapine and haloperidol treatment response to prefrontal, hippocampal, and caudate brain volumes.
        Am J Psychiatry. 2003; 160: 1421-1427
        • Arvanov V.
        • Liang X.
        • Schwartz J.
        • Grossman S.
        • Wang R.
        Clozapine and haloperidol modulate N-methyl-D-aspartate- and non-N-methyl-D-aspartate receptor-mediated neurotransmission in rat prefrontal cortical neurons in vitro.
        J Pharm Exp Thera. 1997; 283: 226-234
        • Arvanov V.
        • Wang R.
        Clozapine, but not haloperidol, prevents the functional hyperactivity of N-methyl-D-aspartate receptors in rat cortical neurons induced by subchronic administration of phencyclidine.
        J Pharmacol Exp Ther. 1999; 289: 1000-1006
        • Baeg E.H.
        • Kim Y.B.
        • Jang J.
        • Kim H.T.
        • Mook-Jung I.
        • Jung M.W.
        Fast spiking and regular spiking neural correlates of fear conditioning in the medial prefrontal cortex of rats.
        Cereb Cortex. 2001; 11: 441-451
        • Bakshi V.P.
        • Swerdlow N.R.
        • Geter M.A.
        Clozapine antagonizes phencyclidine-induced deficits in sensorimotor gating of the startle response.
        J Pharmacol Exp Ther. 1994; 271: 787-794
        • Bartho P.
        • Hirase H.
        • Monconduit L.
        • Zugaro M.
        • Harris K.D.
        • Buzsaki G.
        Characterization of neocortical principal cells and interneurons by network interactions and extracellular features.
        J Neurophysiol. 2004; 92: 600-608
        • Bechara A.
        • Tranel D.
        • Damasio H.
        Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions.
        Brain. 2000; 123: 2189-2202
        • Braver T.
        • Barch D.
        A theory of cognitive control, aging cognition, and neuromodulation.
        Neurosci Biobehav Rev. 2002; 26: 809-817
        • Carlsson A.
        • Waters N.
        • Carlsson M.
        Neurotransmitter interactions in schizophrenia: Therapeutic implications.
        Biol Psychiatry. 1999; 46: 1388-1395
        • Castner S.
        • Goldman-Rakic P.
        • Williams G.
        Animal models of working memory: Insights for targeting cognitive dysfunction in schizophrenia.
        Psychopharmacology (Berl). 2004; 174: 111-125
        • Chen L.
        • Yang C.
        Interaction of dopamine D1 and NMDA receptors mediates acute clozapine potentiation of glutamate EPSPs in rat prefrontal cortex.
        J Neurophysiol. 2002; 87: 2324-2336
        • Conley R.
        • Kelly D.
        Management of treatment resistance in schizophrenia.
        Biol Psychiatry. 2001; 50: 898-911
        • Creese I.
        • Burt D.
        • Snyder S.
        Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs.
        Science. 1976; 192: 481-483
        • Davies M.
        • Compton-Toth B.
        • Hufeisen S.
        • Meltzer H.
        • Roth B.
        The highly efficacious actions of N-desmethylclozapine at muscarinic receptors are unique and not a common property of either typical or atypical antipsychotic drugs: Is M1 agonism a pre-requisite for mimicking clozapine’s actions?.
        Psychopharmacology (Berl). 2005; 178: 451-460
        • Davis J.
        The choice of drugs for schizophrenia.
        N Engl J Med. 2006; 354: 518-520
        • Delfs J.
        • Kelley A.
        The role of D1 and D2 dopamine receptors in oral stereotypy induced by dopaminergic stimulation of the ventrolateral striatum.
        Neurosci. 1990; 39: 59-67
        • Deutch A.
        • Duman R.
        The effects of antipsychotic drugs on Fos protein expression in the prefrontal cortex: Cellular localization and pharmacological characterization.
        Neurosci. 1996; 70: 377-389
        • Dreher J.
        • Burnod Y.
        An integrative theory of the phasic and tonic modes of dopamine modulation in the prefrontal cortex.
        Neural Networks. 2002; 15: 583-602
        • Duncan G.
        • Leipzig J.
        • Mailman R.
        • Lieberman J.
        Differential effects of clozapine and haloperidol on ketamine-induced brain metabolic activation.
        Brain Res. 1998; 812: 65-75
        • Durstewitz D.
        • Seamans J.
        The computational role of dopamine D1 receptors in working memory.
        Neural Networks. 2002; 15: 651-672
        • Durstewitz D.
        • Seamans J.
        • Sejnowski T.
        Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex.
        J Neurophysiol. 2000; 83: 1733-1750
        • Freedman R.
        The choice of antipsychotic drugs for schizophrenia.
        N Engl J Med. 2005; 353: 1286-1288
        • Friedman J.
        Cholinergic targets for cognitive enhancement in schizophrenia: Focus on cholinesterase inhibitors and muscarinic agonists.
        Psychopharmacology (Berl). 2004; 174: 45-53
        • Funahashi S.
        • Bruce C.
        • Goldman-Rakic P.
        Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic “scotomas.”.
        J Neurosci. 1993; 13: 1479-1497
        • Fuster J.M.
        The prefrontal cortex, mediator of cross-temporal contingencies.
        Human Neurobiol. 1985; 4: 169-179
        • Gemperle A.
        • Enz A.
        • Pozza M.
        • Luthi A.
        • Olpe H.
        Effects of clozapine, haloperidol and iloperidone on neurotransmission and synaptic plasticity in prefrontal cortex and their accumulation in brain tissue: An in vitro study.
        Neurosci. 2003; 117: 681-695
        • Gold J.
        • Weinberger D.
        Cognitive deficits and the neurobiology of schizophrenia.
        Curr Opin Neurobiol. 1995; 5: 225-230
        • Gorelick D.
        • Balster R.
        Phencyclidine (PCP).
        in: Bloom F. Kupfer D. Psychopharmacology, The Fourth Generation of Progress. Raven Press, New York1994: 1767-1776
        • Greene R.
        Circuit analysis of NMDAR hypofunction in the hippocampus, in vitro, and psychosis of schizophrenia.
        Hippocampus. 2001; 11: 569-577
        • Homayoun H.
        • Jackson M.E.
        • Moghaddam B.
        Activation of metabotropic glutamate 2/3 (mGlu2/3) receptors reverses the effects of NMDA receptor hypofunction on prefrontal cortex unit activity in awake rats.
        J Neurophysiol. 2004; 93: 1989-2001
        • Izaki Y.
        • Maruki K.
        • Hori K.
        • Nomura M.
        Effects of rat medial prefrontal cortex temporal inactivation on a delayed alternation task.
        Neurosci Lett. 2001; 315: 129-132
        • Jackson M.
        • Homayoun H.
        • Moghaddam B.
        NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex.
        Proc Natl Acad Sci U S A. 2004; 101: 6391-6396
        • Jardemark K.
        • Ninan I.
        • Liang X.
        • Wang R.
        Protein kinase C is involved in clozapine’s facilitation of N-methyl-D-aspartate- and electrically evoked responses in pyramidal cells of the medial prefrontal cortex.
        Neurosci. 2003; 118: 501-512
        • Javitt D.C.
        • Zukin S.R.
        Recent advances in the phencyclidine model of schizophrenia.
        Am J Psychiatry. 1991; 148: 1301-1308
        • Jentsch J.D.
        • Tran A.
        • Taylor J.R.
        • Roth R.H.
        Prefrontal cortical involvement in phencyclidine-induced activation of the mesolimbic dopamine system: Behavioral and neurochemical evidence.
        Psychopharmacol. 1998; 138: 89-95
        • Kane J.
        • Honigfeld G.
        • Singer J.
        • Meltzer H.
        Clozapine for the treatment-resistant schizophrenic.
        Arch Gen Psychiatry. 1988; 45: 789-796
        • Karoum F.
        • Egan M.
        Dopamine release and metabolism in the rat frontal cortex, nucleus accumbens, and striatum: A comparison of acute clozapine and haloperidol.
        Br J Pharmacol. 1992; 105: 703-707
        • Keefe R.S.
        • Silva S.G.
        • Perkins D.O.
        • Lieberman J.A.
        The effects of atypical antipsychotic drugs on neurocognitive impairment in schizophrenia: A review and meta-analysis.
        Schizophr Bull. 1999; 25: 201-222
        • Konicki P.
        • Kwon K.
        • Steele V.
        • White J.
        • Fuller M.
        • Jurjus G.
        • Jaskiw G.
        Prefrontal cortical sulcal widening associated with poor treatment response to clozapine.
        Schizo Res. 2001; 48: 173-176
        • Krystal J.H.
        • Karper L.P.
        • Seibyl J.P.
        • Freeman G.K.
        • Delaney R.
        • Bremner J.D.
        • et al.
        Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: Psychotomimetic, perceptual, cognitive, and neuroendocrine responses.
        Arch Gen Psychiatry. 1994; 51: 199-214
        • Kumari V.
        • Soni W.
        • Sharma T.
        Normalization of information processing deficits in schizophrenia with clozapine.
        Am J Psychiatry. 1999; 156: 1046-1051
        • Kuoppamaki M.S.
        • Hietala J.
        Clozapine and N-desmethylclozapine are potent 5-HT1C receptor antagonists.
        Eur J Pharmacol. 1993; 245 (E): 179-182
        • Kuroki T.
        • Meltzer H.
        • Ichikawa J.
        Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens.
        J Pharmacol Exp Ther. 1999; 288: 774-781
        • Lahti A.
        • Holcomb H.
        • Weiler M.
        • Medoff D.
        • Frey K.
        • Hardin M.
        • Tamminga C.
        Clozapine but not haloperidol re-establishes normal task-activated rCBF patterns in schizophrenia within the anterior cingulate cortex.
        Neuropsychopharmacology. 2004; 29: 171-178
        • Lieberman J.A.
        • Stroup T.S.
        • McEvoy J.P.
        • Swartz M.S.
        • Rosenheck R.A.
        • Perkins D.O.
        • et al.
        • Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators
        Effectiveness of antipsychotic drugs in patients with chronic schizophrenia.
        N Eng J Med. 2005; 353: 1209-1223
        • Lee M.
        • Jayathilake K.
        • Meltzer H.
        A comparison of the effect of clozapine with typical neuroleptics on cognitive function in neuroleptic-responsive schizophrenia.
        Schizophr Res. 1999; 37: 1-11
        • Lewis D.
        • Hashimoto T.
        • Volk D.
        Cortical inhibitory neurons and schizophrenia.
        Nat Rev Neurosci. 2005; 6: 312-324
        • Malhotra A.K.
        • Adler C.M.
        • Kennison S.D.
        • Elman I.
        • Pickar D.
        • Breier A.
        Clozapine blunts N-methyl-D-aspartate antagonist-induced psychosis: A study with ketamine.
        Biol Psychiatry. 1997; 42: 664-668
        • Manes F.
        • Sahakian B.
        • Clark L.
        • Rogers R.
        • Antoun N.
        • Aitken M.
        • Robbins T.
        Decision-making processes following damage to the prefrontal cortex.
        Brain. 2002; 125: 624-639
        • Maurel-Remy S.
        • Bervoets K.
        • Millan M.J.
        Blockade of phencyclidine-induced hyperlocomotion by clozapine and MDL in rats reflects antagonism of 5-HT2A receptors.
        Eur J Pharmacol. 1995; 280: R9-R11
        • McCormick D.A.
        • Connors B.W.
        • Lighthall J.W.
        • Prince D.A.
        Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex.
        J Neurophysiol. 1985; 54: 782-806
        • McEvoy J.P.
        • Lieberman J.A.
        • Stroup T.S.
        • Davis S.M.
        • Meltzer H.Y.
        • Rosenheck R.A.
        • et al.
        • CATIE Investigators
        Effectiveness of clozapine versus olanzapine, quetiapine, and risperidone in patients with chronic schizophrenia who did not respond to prior atypical antipsychotic treatment.
        Am J Psychiatry. 2006; 163: 600-610
        • McGurk S.
        The effects of clozapine on cognitive functioning in schizophrenia.
        J Clin Psychiatry. 1999; 60: 24-29
        • Meltzer H.
        • Alphs L.
        • Green A.
        • Altamura A.
        • Anand R.
        • Bertoldi A.
        • et al.
        Clozapine treatment for suicidality in schizophrenia: International Suicide Prevention Trial (InterSePT).
        Arch Gen Psychiatry. 2003; 60: 82-91
        • Meltzer H.
        • McGurk S.
        The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia.
        Schizophr Bull. 1999; 25: 233-255
        • Meltzer H.Y.
        • Matsubara S.
        • Lee J.C.
        Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and seratonin2 pKi values.
        J Pharmacol Exp Ther. 1989; 251: 238-246
        • Miller P.
        • Lawrie S.M.
        • Hodges A.
        • Clafferty R.
        • Cosway R.
        • Johnstone E.C.
        Genetic liability, illicit drug use, life stress and psychotic symptoms: Preliminary findings from the Edinburgh study of people at high risk for schizophrenia.
        Soc Psychiatry Psychiatr Epidemiol. 2001; 36: 338-342
        • Miyamoto S.
        • Duncan G.
        • Marx C.
        • Lieberman J.
        Treatments for schizophrenia: A critical review of pharmacology and mechanisms of action of antipsychotic drugs.
        Mol Psychiatry. 2005; 10: 79-104
        • Moghaddam B.
        • Adams B.
        • Verma A.
        • Daly D.
        Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex.
        J Neurosci. 1997; 17: 2921-2927
        • Moghaddam B.
        • Bunney B.S.
        Acute effects of typical and atypical antipsychotic drugs on the release of dopamine from prefrontal cortex, nucleus accumbens, and striatum of the rat: An in vivo microdialysis study.
        J Neurosci. 1990; 54: 1755-1760
        • Molina V.
        • Reig S.
        • Sarramea F.
        • Sanz J.
        • Francisco Artaloytia J.
        • Luque R.
        • et al.
        Anatomical and functional brain variables associated with clozapine response in treatment-resistant schizophrenia.
        Psychiat Res. 2003; 124: 153-161
        • Nicolelis M.A.L.
        • Dimitrov D.
        • Carmena J.M.
        • Crist R.
        • Lehew G.
        • Kralik J.D.
        • Wise S.P.
        Chronic, multisite, multielectrode recordings in macaque monkeys.
        Proc Natl Acad Sci U S A. 2003; 100: 11041-11046
        • O’Donnell P.
        Dopamine gating of forebrain neural ensembles.
        Eur J Neurosci. 2003; 17: 429-435
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotaxic Coordinates. Academic Press, San Diego1998
        • Peters Y.
        • Barnhardt N.
        • O’Donnell P.
        Prefrontal cortical up states are synchronized with ventral tegmental area activity.
        Synapse. 2004; 52: 143-152
        • Piscitelli S.
        • Frazier J.
        • McKenna K.
        • Albus K.
        • Grothe D.
        • Gordon C.
        • Rapoport J.
        Plasma clozapine and haloperidol concentrations in adolescents with childhood-onset schizophrenia: Association with response.
        J Clin Psychiatry. 1994; 55: 94-97
        • Robertson G.
        • Fibiger H.
        Neuroleptics increase c-fos expression in the forebrain: Contrasting effects of haloperidol and clozapine.
        Neurosci. 1992; 46: 315-328
        • Roth B.
        • Sheffler D.
        • Kroeze W.
        Magic shotguns versus magic bullets: Selectively non-selective drugs for mood disorders and schizophrenia.
        Nat Rev Drug Discov. 2004; 3: 353-359
        • Sams-Dodd F.
        A test of the predictive validity of animal models of schizophrenia based on phencyclidine and D-amphetamine.
        Neuropsychopharmacology. 1998; 18: 293-304
        • Sawaguchi T.
        • Iba M.
        Prefrontal cortical representation of visuospatial working memory in monkeys examined by local inactivation with muscimol.
        J Neurophysiol. 2001; 86: 2041-2053
        • Seeman P.
        • Lee T.
        • Chau-Wong M.
        • Wong K.
        Antispsychotic drug doses and neuroleptic/dopamine receptors.
        Nature. 1976; 261: 717-719
        • Sharma T.
        Cognitive effects of conventional and atypical antipsychotics in schizophrenia.
        Br J Psychiatry Suppl. 1999; 38: 44-51
        • Spivak B.
        • Shabash E.
        • Sheitman B.
        • Weizman A.
        • Mester R.
        The effects of clozapine versus haloperidol on measures of impulsive aggression and suicidality in chronic schizophrenia patients: An open, nonrandomized, 6-month study.
        J Clin Psychiatry. 2003; 64: 755-760
        • Stockmeier C.
        • DiCarlo J.
        • Zhang Y.
        • Thompson P.
        • Meltzer H.
        Characterization of typical and atypical antipsychotic drugs based on in vivo occupancy of serotonin2 and dopamine2 receptors.
        J Pharmacol Exp Ther. 1993; 266: 1374-1384
        • Sur C.
        • Mallorga P.J.
        • Wittmann M.
        • Jacobson M.A.
        • Pascarella D.
        • Williams J.B.
        • et al.
        N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity.
        Proc Natl Acad Sci U S A. 2003; 100: 13674-13679
        • Svensson T.
        Alpha-adrenoceptor modulation hypothesis of antipsychotic atypicality.
        Biol Psychiatry. 2003; 27: 1145-1158
        • Takahata R.
        • Moghaddam B.
        Activation of glutamate neurotransmission in the prefrontal cortex sustains the motoric and dopaminergic effects of phencyclidine.
        Neuropsychopharmacology. 2003; 28: 1117-1124
        • Tiedtke P.I.
        • Bischoff C.
        • Schmidt W.J.
        MK-801-induced stereotypy and its antagonism by neuroleptic drugs.
        J Neural Trans. 1990; 81: 173-182
        • Tierney P.
        • Degenetais E.
        • Thierry A.
        • Glowinski J.
        • Gioanni Y.
        Influence of the hippocampus on interneurons of the rat prefrontal cortex.
        Eur J Neurosci. 2004; 20: 514-524
        • Verma A.
        • Moghaddam B.
        NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: Modulation by dopamine.
        J Neurosci. 1996; 16: 373-379
        • Wahlbeck K.
        • Cheine M.
        • Essali M.
        Clozapine versus typical neuroleptic medication for schizophrenia.
        Cochrane Database Syst Rev. 2000; 2: CD000059
        • Weiner D.
        • Meltzer H.
        • Veinbergs I.
        • Donohue E.
        • Spalding T.
        • Smith T.
        • et al.
        The role of M1 muscarinic receptor agonism of N-desmethylclozapine in the unique clinical effects of clozapine.
        Psychopharmacology (Berl). 2004; 177: 207-216
        • Williams G.V.
        • Goldman-Rakic P.S.
        Modulation of memory fields by dopamine D1 receptors in prefrontal cortex.
        Nature. 1995; 376: 393-401
        • Winterer G.
        • Weinberger D.
        Genes, dopamine and cortical signal-to-noise ratio in schizophrenia.
        Trends Neurosci. 2004; 27: 683-690
        • Yamamoto B.
        • Pehek E.
        • Meltzer H.
        Brain region effects of clozapine on amino acid and monoamine transmission.
        J Clin Psychiatry. 1994; 55: 8-14
        • Yang C.
        • Seamans J.
        Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: Modulation of dendritic-somatic signal integration.
        J Neurosci. 1996; 16: 1922-1935
        • Young C.
        • Meltzer H.
        • Deutch A.
        Effects of desmethylclozapine on Fos protein expression in the forebrain: In vivo biological activity of the clozapine metabolite.
        Neuropsychopharmacology. 1998; 19: 99-103
        • Youngren K.D.
        • Inglis F.M.
        • Pivirotto P.J.
        • Jedema H.P.
        • Bradberry C.W.
        • Goldman-Rakic P.S.
        • et al.
        Clozapine preferentially increases dopamine release in the rhesus monkey prefrontal cortex compared with the caudate nucleus.
        Neuropsychopharmacology. 1999; 20: 403-412
        • Youngren K.D.
        • Moghaddam B.
        • Bunney B.S.
        • Roth R.H.
        Preferential activation of dopamine overflow in prefrontal cortex produced by chronic clozapine treatment.
        Neurosci Lett. 1994; 165: 41-44