Advertisement
Original article| Volume 61, ISSUE 5, P653-660, March 01, 2007

Download started.

Ok

GABRB2 Association with Schizophrenia: Commonalities and Differences Between Ethnic Groups and Clinical Subtypes

Published:September 04, 2006DOI:https://doi.org/10.1016/j.biopsych.2006.05.003

      Background

      Single nucleotide polymorphisms (SNPs) and haplotypes in intron 8 of type A γ-aminobutyric acid (GABAA) receptor β2 subunit gene (GABRB2) were initially found to be associated with schizophrenia in Chinese. This finding was subjected to cross-validation in this study with Japanese (JP) and German Caucasian (GE) subjects.

      Methods

      Single nucleotide polymorphisms discovery and genotyping were carried out through resequencing of a 1839 base pair (bp) region in GABRB2. Tagging SNPs (tSNPs) were selected based on linkage disequilibrium (LD), combinations of which were analyzed with Bonferroni correction and permutation for disease association. Random resampling was applied to generate size- and gender-balanced cases and control subjects.

      Results

      Out of the 17 SNPs (9.2/kilobase [kb]) revealed, 6 were population-specific. Population variations in LD were observable, and at least two low LD points were identified in both populations. Although disease association at single SNP level was only shown in GE, strong association was demonstrated in both JP (p = .0002 – .0191) and GE (p = .0033 – .0410) subjects, centering on haplotypes containing rs1816072 and rs1816071. Among different clinical subtypes, the most significant association was exhibited by systematic schizophrenia.

      Conclusions

      Cross-population validation of GABRB2 association with schizophrenia has been obtained with JP and GE subjects, with the genotype-disease correlations being strongest in systematic schizophrenia, the most severe subtype of the disease.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders. 4th ed. American Psychiatric Press, Washington, DC1994
        • Austin J.
        Schizophrenia: An update and review.
        J Genet Couns. 2005; 14: 329-340
        • Ban T.A.
        Neuropsychopharmacology and the genetics of schizophrenia: A history of the diagnosis of schizophrenia.
        Prog Neuropsychopharmacol Biol Psychiatry. 2004; 28: 753-762
        • Barrett J.C.
        • Fry B.
        • Maller J.
        • Daly M.J.
        Haploview: Analysis and visualization of LD and haplotype maps.
        Bioinformatics. 2005; 21: 263-265
        • Benes F.M.
        • Khan Y.
        • Vincent S.L.
        • Wickramasinghe R.
        Differences in the sub-regional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain.
        Synapse. 1996; 22: 338-349
        • Benes F.M.
        • Vincent S.L.
        • Alsterberg G.
        • Bird E.D.
        • SanGiovanni J.P.
        Increased GABAA receptor binding in superficial layers of cingulate cortex in schizophrenics.
        J Neurosci. 1992; 12: 924-929
        • Benes F.M.
        • Vincent S.L.
        • Marie A.
        • Khan Y.
        Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects.
        Neuroscience. 1996; 75: 1021-1031
        • Braff D.L.
        • Geyer M.A.
        • Swerdlow N.R.
        Human studies of prepulse inhibition of startle: Normal subjects, patient groups, and pharmacological studies.
        Psychopharmacology (Berl). 2001; 156: 234-258
        • Braff D.L.
        • Light G.A.
        • Ellwanger J.
        • Sprock J.
        • Swerdlow N.R.
        Female schizophrenia patients have prepulse inhibition deficits.
        Biol Psychiatry. 2005; 57: 817-820
        • Cardno A.G.
        • Gottesman I.I.
        Twin studies of schizophrenia: From bow-and-arrow concordances to star wars Mx and functional genomics.
        Am J Med Genet. 2000; 97: 12-17
        • Caruncho H.J.
        • Dopeso-Reyes I.G.
        • Loza M.I.
        • Rodriguez M.A.
        A GABA, reelin, and the neurodevelopmental hypothesis of schizophrenia.
        Crit Rev Neurobiol. 2004; 16: 25-32
        • Clinton S.M.
        • Meador-Woodruff J.H.
        Thalamic dysfunction in schizophrenia: Neurochemical, neuropathological, and in vivo imaging abnormalities.
        Schizophr Res. 2004; 69: 237-253
        • Costa E.
        • Davis J.M.
        • Dong E.
        • Grayson D.R.
        • Guidotti A.
        • Tremolizzo L.
        • et al.
        A GABAergic cortical deficit dominates schizophrenia pathophysiology.
        Crit Rev Neurobiol. 2004; 16: 1-23
        • de Bakker P.I.
        • Yelensky R.
        • Pe’er I.
        • Gabriel S.B.
        • Daly M.J.
        • Altshuler D.
        Efficiency and power in genetic association studies.
        Nat Genet. 2005; 37: 1217-1223
        • Dudbridge F.
        Pedigree disequilibrium tests for multi-locus haplotypes.
        Genet Epidemiol. 2003; 25: 115-121
        • Elvevag B.
        • Goldberg T.E.
        Cognitive impairment in schizophrenia is the core of the disorder.
        Crit Rev Neurobiol. 2000; 14: 1-21
        • Fallin D.
        • Schork N.J.
        Accuracy of haplotype frequency estimation for bi-allelic loci, via the expectation-maximization algorithm for unphased diploid genotype data.
        Am J Hum Genet. 2000; 67: 947-959
        • Franzek E.
        • Beckmann H.
        Different genetic background of schizophrenia spectrum psychoses: A twin study.
        Am J Psychiatry. 1998; 155: 76-83
        • Gottesman I.I.
        Vital statistics, demography, and schizophrenia: Editor’s introduction.
        Schizophr Bull. 1989; 15: 5-7
        • Guidotti A.
        • Auta J.
        • Davis J.M.
        • Dong E.
        • Grayson D.R.
        • Veldic M.
        • et al.
        GABAergic dysfunction in schizophrenia: New treatment strategies on the horizon.
        Psychopharmacology (Berl). 2005; 180: 191-205
        • Gurling H.M.
        • Kalsi G.
        • Brynjolfson J.
        • Sigmundsson T.
        • Sherrington R.
        • Mankoo B.S.
        • et al.
        Genome-wide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21-22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23.
        Am J Hum Genet. 2001; 68: 661-673
        • Harrison P.J.
        The hippocampus in schizophrenia: A review of the neuro-pathological evidence and its patho-physiological implications.
        Psychopharmacology (Berl). 2004; 174: 151-162
        • Harrison P.J.
        • Weinberger D.R.
        Schizophrenia genes, gene expression, and neuropathology: On the matter of their convergence.
        Mol Psychiatry. 2005; 10: 40-68
        • Hauser J.
        • Rudolph U.
        • Keist R.
        • Mohler H.
        • Feldon J.
        • Yee B.K.
        Hippocampal α5 subunit-containing GABAA receptors modulate the expression of prepulse inhibition.
        Mol Psychiatry. 2005; 10: 201-207
        • Heckers S.
        • Konradi C.
        Hippocampal neurons in schizophrenia.
        J Neural Transm. 2002; 109: 891-905
        • Hill W.G.
        • Robertson A.
        Linkage disequilibrium in finite populations.
        Theor Appl Genet. 1968; 38: 226-231
        • Ikeda M.
        • Iwata N.
        • Suzuki T.
        • Kitajima T.
        • Yamanouchi Y.
        • Kinoshita Y.
        • et al.
        Association analysis of chromosome 5 GABAA receptor cluster in Japanese schizophrenia patients.
        Biol Psychiatry. 2005; 58: 440-445
        • Ingraham L.J.
        • Kety S.S.
        Adoption studies of schizophrenia.
        Am J Med Genet. 2000; 97: 18-22
        • Ishikawa M.
        • Mizukami K.
        • Iwakiri M.
        • Hidaka S.
        • Asada T.
        Immunohistochemical and immunoblot study of GABAA α1 and β2/3 subunits in the prefrontal cortex of subjects with schizophrenia and bipolar disorder.
        Neurosci Res. 2004; 50: 77-84
        • Kennedy J.L.
        • Farrer L.A.
        • Andreasen N.C.
        • Mayeux R.
        • George-Hyslop P.
        The genetics of adult-onset neuro-psychiatric disease: Complexities and conundra?.
        Science. 2003; 302: 822-826
        • Korpi E.R.
        • Sinkkonen S.T.
        GABAA receptor subtypes as targets for neuro-psychiatric drug development.
        Pharmacol Ther. 2006; 109: 12-32
        • Leonhard K.
        Classification of Endogenous Psychoses and their Differentiated Etiology. 2nd ed. Springer, New York1999
        • Lewontin R.C.
        On measures of gametic disequilibrium.
        Genetics. 1988; 120: 849-852
        • Liu J.
        • Shi Y.
        • Tang W.
        • Guo T.
        • Li D.
        • Yang Y.
        • et al.
        Positive association of the human GABAA receptor β2 subunit gene haplotype with schizophrenia in the Chinese Han population.
        Biochem Biophys Res Commun. 2005; 334: 817-823
        • Lo W.S.
        • Lau C.F.
        • Xuan Z.
        • Chan C.F.
        • Feng G.Y.
        • He L.
        • et al.
        Association of SNPs and haplotypes in GABAAreceptor β2 gene with schizophrenia.
        Mol Psychiatry. 2004; 9: 603-608
        • Lyne J.
        • Kelly B.D.
        • O’Connor W.T.
        Schizophrenia: A review of neuro-pharmacology.
        Ir J Med Sci. 2004; 173: 155-159
        • Moises H.W.
        • Zoega T.
        • Gottesman I.I.
        The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia.
        BMC Psychiatry. 2002; 2: 8
        • Morris B.J.
        • Cochran S.M.
        • Pratt J.A.
        PCP: From pharmacology to modelling schizophrenia.
        Curr Opin Pharmacol. 2005; 5: 101-106
        • Nickerson D.A.
        • Tobe V.O.
        • Taylor S.L.
        PolyPhred: Automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing.
        Nucleic Acids Res. 1997; 25: 2745-2751
        • Nielsen D.M.
        • Ehm M.G.
        • Weir B.S.
        Detecting marker-disease association by testing for Hardy-Weinberg disequilibrium at a marker locus.
        Am J Hum Genet. 1998; 63: 1531-1540
        • Owen M.J.
        • Williams N.M.
        • O’Donovan M.C.
        The molecular genetics of schizophrenia: New findings promise new insights.
        Mol Psychiatry. 2004; 9: 14-27
        • Petryshen T.L.
        • Middleton F.A.
        • Tahl A.R.
        • Rockwell G.N.
        • Purcell S.
        • Aldinger K.A.
        • et al.
        Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia.
        Mol Psychiatry. 2005; 10 (1057): 1074-1088
        • Pfuhlmann B.
        • Franzek E.
        • Stöber G.
        • Cetkovich-Bakmas M.
        • Beckmann H.
        On interrater reliability for Leonhard’s classification of endogenous psychoses.
        Psychopathology. 1997; 30: 100-105
        • Roberts E.
        Prospects for research on schizophrenia.
        Neurosci Res Program Bull. 1972; 10: 468-482
        • Rozen S.
        • Skaletsky H.
        Primer3 on the WWW for general users and for biologist programmers.
        in: Krawetz S. Misener S. Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ2000: 365-386
        • Schneider S.
        • Kueffer J.M.
        • Roesslie D.
        • Excoffier L.
        Arlequin: A Software for Population Genetic Data Analysis. Genetics and Biometry Laboratory Department of Anthropology, University of Geneva, Geneva, Switzerland2000
        • Schwab S.G.
        • Eckstein G.N.
        • Hallmayer J.
        • Lerer B.
        • Albus M.
        • Borrmann M.
        • et al.
        Evidence suggestive of a locus on chromosome 5q31 contributing to susceptibility for schizophrenia in German and Israeli families by multipoint affected sib-pair linkage analysis.
        Mol Psychiatry. 1997; 2: 156-160
        • Shayegan D.K.
        • Stahl S.M.
        Emotion processing, the amygdala, and outcome in schizophrenia.
        Prog Neuropsychopharmacol Biol Psychiatry. 2005; 29: 840-845
        • Stöber G.
        • Franzek E.
        • Bechmann H.
        • Schmidtke A.
        Exposure to prenatal infections, genetics and the risk of systematic and periodic catatonia.
        J Neural Transm. 2002; 109: 921-929
        • Straub R.E.
        • MacLean C.J.
        • O’Neill F.A.
        • Walsh D.
        • Kendler K.S.
        Support for a possible schizophrenia vulnerability locus in region 5q22-31 in Irish families.
        Mol Psychiatry. 1997; 2: 148-155
        • Weale M.E.
        • Depondt C.
        • Macdonald S.J.
        • Smith A.
        • Lai P.S.
        • Shorvon S.D.
        • et al.
        Selection and evaluation of tagging SNPs in the neuronal-sodium-channel gene SCN1A: Implications for linkage-disequilibrium gene mapping.
        Am J Hum Genet. 2003; 73: 551-565
        • Yee B.K.
        • Keist R.
        • Von Boehmer L.
        • Studer R.
        • Benke D.
        • Hagenbuch N.
        • et al.
        A schizophrenia-related sensorimotor deficit links α3-containing GABAA receptors to a dopamine hyperfunction.
        Proc Natl Acad Sci U S A. 2005; 102: 17154-17159
        • Yu Z.
        • Chen J.
        • Shi H.
        • Stoeber G.
        • Tsang S.Y.
        • Xue H.
        Analysis of GABRB2 association with schizophrenia in German population with DNA sequencing and one-label extension method for SNP genotyping.
        Clin Biochem. 2006; 39: 210-218