Advertisement
Original article| Volume 60, ISSUE 7, P741-751, October 01, 2006

Acetylcholinesterase Modulates Stress-Induced Motor Responses Through Catalytic and Noncatalytic Properties

      Background

      Cholinergic neurotransmission notably participates in stress-induced motor responses. Here we report the contribution of alternative splicing of acetylcholinesterase (AChE) pre-mRNA to modulate these responses. More specifically, we induced stress-associated hypofunction of dopaminergic, mainly D2 dopamine receptor–mediated neurotransmission by haloperidol and explored stress induced hyperlocomotion and catalepsy, an extreme form of immobility, induced in mice with AChE deficiencies.

      Methods

      Conditional transgenic (Tet/AS) mice were created with tetracycline-induced antisense suppression of AChE gene expression. Locomotion and catalepsy times were measured in Tet/AS and strain-matched control mice, under open-field exposure threat and under home-cage safety.

      Results

      In vitro, NGF-treated PC12 cells failed to extend neurites upon Tet/AS suppression. In vivo, Tet/AS but not control mice showed stress-associated hippocampal deposits of heat-shock protein 70 and GRP78 (BiP), predicting posttranscriptional changes in neuronal reactions. Supporting this notion, their striatal cholinergic neurons demonstrated facilitated capacity for neurite extension, attributing these in vivo changes in neurite extension to network interactions. Tet/AS mice presented stress-induced hyperlocomotion. Moreover, the dopamine antagonist haloperidol induced longer catalepsy in threatened Tet/AS than in control mice. When returned to home-cage safety, Tet/AS mice showed retarded release from catalepsy.

      Conclusions

      Acetylcholinesterase modulates stress-induced motor responses and facilitates resumption of normal motor behavior following stress through both catalytic and noncatalytic features.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alcantara A.A.
        • Chen V.
        • Herring B.E.
        • Mendenhall J.M.
        • Berlanga M.L.
        Localization of dopamine D2 receptors on cholinergic interneurons of the dorsal striatum and nucleus accumbens of the rat.
        Brain Res. 2003; 986: 22-29
        • Antelman S.M.
        • Kocan D.
        • Knopf S.
        • Edwards D.J.
        • Caggiula A.R.
        One brief exposure to a psychological stressor induces long-lasting, time-dependent sensitization of both the cataleptic and neurochemical responses to haloperidol.
        Life Sci. 1992; 51: 261-266
        • Barykina N.N.
        • Alekhina T.A.
        • Chugui V.F.
        • Petrenko O.I.
        • Popova N.K.
        • Kolpakov V.G.
        Correlation between cataleptic freezing and prepulse inhibition of the startle reflex in rats.
        Neurosci Behav Physiol. 2004; 34: 413-416
        • Bell M.I.
        • Richardson P.J.
        • Lee K.
        Functional and molecular characterization of metabotropic glutamate receptors expressed in rat striatal cholinergic interneurones.
        J Neurochem. 2002; 81: 142-149
        • Berlanga M.L.
        • Simpson T.K.
        • Alcantara A.A.
        Dopamine D5 receptor localization on cholinergic neurons of the rat forebrain and diencephalon: A potential neuroanatomical substrate involved in mediating dopaminergic influences on acetylcholine release.
        J Comp Neurol. 2005; 492: 34-49
        • Birikh K.R.
        • Sklan E.H.
        • Shoham S.
        • Soreq H.
        Interaction of “readthrough” acetylcholinesterase with RACK1 and PKCbeta II correlates with intensified fear-induced conflict behavior.
        Proc Natl Acad Sci U S A. 2003; 100: 283-288
        • Bowers Jr, M.B.
        • Roth R.H.
        Interaction of atropine-like drugs with dopamine-containing neurones in rat brain.
        Br J Pharmacol. 1972; 44: 301-306
        • Cabib S.
        • Giardino L.
        • Calzá L.
        • Zanni M.
        • Mele A.
        • Puglisi-Allegra S.
        Stress promotes major changes in dopamine receptor densities within the mesoaccumbens and nigrostriatal systems.
        Neuroscience. 1998; 84: 193-200
        • Calabresi P.
        • Centonze D.
        • Gubellini P.
        • Pisani A.
        • Bernardi G.
        Acetylcholine-mediated modulation of striatal function.
        Trends Neurosci. 2000; 23: 120-126
        • Chopde C.T.
        • Hote M.S.
        • Mandhane S.N.
        • Muthal A.V.
        Glucocorticoids attenuate haloperidol-induced catalepsy through adrenal catecholamines.
        J Neural Trans. 1995; 102: 47-54
        • Cohen O.
        • Erb C.
        • Ginzberg D.
        • Pollak Y.
        • Seidman S.
        • Shoham S.
        • et al.
        Neuronal overexpression of “readthrough” acetylcholinesterase is associated with antisense-suppressible behavioral impairments.
        Mol Psychiatry. 2002; 7: 874-885
        • Cohen O.
        • Reichenberg A.
        • Perry C.
        • Ginzberg D.
        • Pollmacher T.
        • Soreq H.
        • Yirmiya R.
        Endotoxin-induced changes in human working and declarative memory associate with cleavage of plasma “readthrough” acetylcholinesterase.
        J Mol Neurosci. 2003; 21: 199-212
        • Cox C.L.
        • Metherate R.
        • Ashe J.H.
        Modulation of cellular excitability in neocortex: Muscarinic receptor and second messenger-mediated actions of acetylcholine.
        Synapse. 1994; 16: 123-136
        • Dains K.
        • Hitzemann B.
        • Hitzemann R.
        Genetics, neuroleptic response and the organization of cholinergic neurons in the mouse striatum.
        J Pharmacol Exp Ther. 1996; 279: 1430-1438
        • Day J.C.
        • Koehl M.
        • Le Moal M.
        • Maccari S.
        Corticotropin-releasing factor administered centrally, but not peripherally, stimulates hippocampal acetylcholine release.
        J Neurochem. 1998; 71: 622-629
        • De Ryck M.
        • Schallert T.
        • Teitelbaum P.
        Morphine versus haloperidol catalepsy in the rat: A behavioral analysis of postural support mechanisms.
        Brain Res. 1980; 201: 143-172
        • DeBoer P.
        • Abercrombie E.D.
        Physiological release of striatal acetylcholine in vivo: Modulation by D1 and D2 dopamine receptor subtypes.
        J Pharmacol Exp Ther. 1996; 277: 775-783
        • Dori A.
        • Cohen J.
        • Silverman W.F.
        • Pollack Y.
        • Soreq H.
        Functional manipulations of acetylcholinesterase splice variants highlight alternative splicing contributions to murine neocortical development.
        Cereb Cortex. 2005; 15: 419-430
        • Eilam D.
        Die hard: A blend of freezing and fleeing as a dynamic defense—implications for the control of defensive behavior.
        Neurosci Biobehav Rev. 2005; 29: 1181
        • Forman M.S.
        • Lee V.M.
        • Trojanowski J.Q.
        “Unfolding” pathways in neurodegenerative disease.
        Trends Neurosci. 2003; 26: 407-410
        • Franklin K.B.J.
        • Paxinos G.
        The Mouse Brain in Stereotaxic Coordinates. Academic Press, San Diego, CA1997
        • Fregoso-Aguilar T.
        • Urióstegui T.
        • Zamudio S.
        • de la Cruz F.
        The differential effect of haloperidol and repetitive induction on four immobility responses in mouse and guinea pig.
        Behav Pharmacol. 2002; 13: 253-260
        • Gossen M.
        • Bujard H.
        Tight control of gene expression in mammalian cells by tetracycline-responsive promoters.
        Proc Natl Acad Sci U S A. 1992; 89: 5547-5551
        • Graeff F.G.
        Neuroanatomy and neurotransmitter regulation of defensive behaviors and related emotions in mammals.
        Braz J Med Biol Res. 1994; 27: 811-829
        • Gray J.A.
        • McNaughton N.
        The Neuropsychology of Anxiety: An Inquiry into the Functions of the Septo-Hippocampal System. 2nd ed. Oxford University Press, Oxford, England2000
        • Grifman M.
        • Galyam N.
        • Seidman S.
        • Soreq H.
        Functional redundancy of acetylcholinesterase and neuroligin in mammalian neuritogenesis.
        Proc Natl Acad Sci U S A. 1998; 95: 13935-13940
        • Groenewegen H.J.
        • Vermeulen-Van der Zee E.
        • te Kortschot A.
        • Witter M.P.
        Organization of the projections from the subiculum to the ventral striatum in the rat.
        Neuroscience. 1987; 23: 103-120
        • Haber S.N.
        • Fudge J.L.
        • McFarland N.R.
        Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum.
        J Neurosci. 2000; 20: 2369-2382
        • Harding H.P.
        • Zhang Y.
        • Bertolotti A.
        • Zeng H.
        • Ron D.
        Perk is essential for translational regulation and cell survival during the unfolded protein response.
        Mol Cell. 2000; 5: 897-904
        • Heilig M.
        The NPY system in stress, anxiety and depression.
        Neuropeptides. 2004; 38: 213-224
        • Heilig M.
        • Koob G.F.
        • Ekman R.
        • Britton K.T.
        Corticotropin-releasing factor and neuropeptide Y: Role in emotional integration.
        Trends Neurosci. 1994; 17: 80-85
        • Horger B.A.
        • Roth R.H.
        The role of mesoprefrontal dopamine neurons in stress.
        Crit Rev Neurobiol. 1996; 10: 395-418
        • Hoskins B.
        • Peeler D.F.
        • Lawson K.
        • Barnes A.M.
        • Ho I.K.
        Effects of haloperidol on motor and cognitive functioning in aged mice.
        Brain Res Bull. 1991; 27: 279-281
        • Imaki T.
        • Shibasaki T.
        • Hotta M.
        • Demura H.
        Intracerebroventricular administration of corticotropin-releasing factor induces c-fos mRNA expression in brain regions related to stress responses: Comparison with pattern of c-fos mRNA induction after stress.
        Brain Res. 1993; 616: 114-125
        • Iwata N.
        • Mikuni N.
        EEG change in the conscious rat during immobility induced by psychological stress.
        Psychopharmacology. 1980; 71: 117-122
        • Izzo E.
        • Sanna P.P.
        • Koob G.F.
        Impairment of dopaminergic system function after chronic treatment with corticotropin-releasing factor.
        Pharmacology Biochem Behav. 2005; 81: 701
        • Janowsky D.S.
        • Overstreet D.H.
        • Nurnberger Jr, J.I.
        Is cholinergic sensitivity a genetic marker for the affective disorders?.
        Am J Med Genet. 1994; 54: 335-344
        • Jucker M.
        • Walker L.C.
        • Kuo H.
        • Tian M.
        • Ingram D.K.
        Age-related fibrillar deposits in brains of C57BL/6 mice.
        Mol Neurobiol. 1994; 9: 125-133
        • Katayama T.
        • Imaizumi K.
        • Sato N.
        • Miyoshi K.
        • Kudo T.
        • Hitomi J.
        • et al.
        Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response.
        Nat Cell Biol. 1999; 1: 479-485
        • Katoh A.
        • Nabeshima T.
        • Kuno A.
        • Wada M.
        • Ukai R.
        • Kameyama T.
        Changes in striatal dopamine release in stress-induced conditioned suppression of motility in rats.
        Behav Brain Res. 1996; 77: 219-221
        • Kaufer D.
        • Friedman A.
        • Seidman S.
        • Soreq H.
        Acute stress facilitates long-lasting changes in cholinergic gene expression.
        Nature. 1998; 393: 373-377
        • Kaufman R.J.
        Stress signaling from the lumen of the endoplasmic reticulum: Coordination of gene transcriptional and translational controls.
        Genes Dev. 1999; 13: 1211-1233
        • Kawaguchi Y.
        • Wilson C.J.
        • Augood S.J.
        • Emson P.C.
        Striatal interneurones: Chemical, physiological and morphological characterization.
        Trends Neurosci. 1995; 18: 527-535
        • Keay K.A.
        • Bandler R.
        Parallel circuits mediating distinct emotional coping reactions to different types of stress.
        Neurosci Biobehav Rev. 2001; 25: 669
        • Klemm W.R.
        Evidence for a cholinergic role in haloperidol-induced catalepsy.
        Psychopharmacology. 1985; 85: 139-142
        • Layer P.G.
        Nonclassical roles of cholinesterases in the embryonic brain and possible links to Alzheimer disease.
        Alzheimer Dis Assoc Disord. 1995; 9: 29-36
        • Layer P.G.
        • Willbold E.
        Novel functions of cholinesterases in development, physiology and disease.
        Prog Histochem Cytochem. 1995; 29: 1-99
        • Lee K.S.
        • Jin S.M.
        • Kim S.S.
        • Lee Y.C.
        Doxycycline reduces airway inflammation and hyperresponsiveness in a murine model of toluene diisocyanate-induced asthma.
        J Allergy Clin Immunol. 2004; 113: 902-909
        • Lipton S.A.
        • Kater S.B.
        Neurotransmitter regulation of neuronal outgrowth, plasticity and survival.
        Trends Neurosci. 1989; 12: 265-270
        • Massoulié J.
        • Bon S.
        • Perrier N.
        • Falasca C.
        The C-terminal peptides of acetylcholinesterase: Cellular trafficking, oligomerization and functional anchoring.
        Chem Biol Interact. 2005; 3: 157-158
        • McNaughton N.
        • Gray J.A.
        Anxiolytic action on the behavioural inhibition system implies multiple types of arousal contribute to anxiety.
        J Affect Disord. 2000; 61: 161
        • Meshorer E.
        • Erb C.
        • Gazit R.
        • Pavlovsky L.
        • Kaufer D.
        • Friedman A.
        • et al.
        Alternative splicing and neuritic mRNA translocation under long-term neuronal hypersensitivity.
        Science. 2002; 295: 508-512
        • Meshorer E.
        • Soreq H.
        Virtues and woes of AChE alternative splicing in stress-related neuropathologies.
        Trends Neurosci. 2006; 29: 216-224
        • Miyakawa T.
        • Yamada M.
        • Duttaroy A.
        • Wess J.
        Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor.
        J Neurosci. 2001; 21: 5239-5250
        • Muller T.C.
        • Rocha J.B.
        • Morsch V.M.
        • Neis R.T.
        • Schetinger M.R.
        Antidepressants inhibit human acetylcholinesterase and butyrylcholinesterase activity.
        Biochim Biophys Acta. 2002; 1587: 92-98
        • Nijholt I.
        • Farchi N.
        • Kye M.
        • Sklan E.H.
        • Shoham S.
        • Verbeure B.
        • et al.
        Stress-induced alternative splicing of acetylcholinesterase results in enhanced fear memory and long-term potentiation.
        Mol Psychiatry. 2004; 9: 174-183
        • Overstreet D.H.
        • Janowsky D.S.
        • Gillin J.C.
        • Shiromani P.J.
        • Sutin E.L.
        Stress-induced immobility in rats with cholinergic supersensitivity.
        Biol Psychiatry. 1986; 21: 657-664
        • Perrier N.A.
        • Salani M.
        • Falasca C.
        • Bon S.
        • Augusti-Tocco G.
        • Massoulié J.
        The readthrough variant of acetylcholinesterase remains very minor after heat shock, organophosphate inhibition and stress, in cell culture and in vivo.
        J Neurochem. 2005; 94: 629-638
        • Perrotti L.I.
        • Hadeishi Y.
        • Ulery P.G.
        • Barrot M.
        • Monteggia L.
        • Duman R.S.
        • Nestler E.J.
        Induction of deltaFosB in reward-related brain structures after chronic stress.
        J Neurosci. 2004; 24: 10594-10602
        • Phelps E.A.
        • LeDoux J.E.
        Contributions of the amygdala to emotion processing: From animal models to human behavior.
        Neuron. 2005; 48: 175-187
        • Picconi B.
        • Centonze D.
        • Håkansson K.
        • Bernardi G.
        • Greengard P.
        • Fisone G.
        • et al.
        Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia.
        Nature Neurosci. 2003; 6: 501-506
        • Pisani A.
        • Bonsi P.
        • Centonze D.
        • Calabresi P.
        • Bernardi G.
        Activation of D2-like dopamine receptors reduces synaptic inputs to striatal cholinergic interneurons.
        J Neurosci. 2000; 20: RC69
        • Pollack A.E.
        Anatomy, physiology, and pharmacology of the basal ganglia.
        Neurol Clin. 2001; 19: 523
        • Power A.E.
        • McGaugh J.L.
        Cholinergic activation of the basolateral amygdala regulates unlearned freezing behavior in rats.
        Behav Brain Res. 2002; 134: 307
        • Sacks O.W.
        Awakenings. Picador, London1999
        • Sauvage M.
        • Steckler T.
        Detection of corticotropin-releasing hormone receptor 1 immunoreactivity in cholinergic, dopaminergic and noradrenergic neurons of the murine basal forebrain and brainstem nuclei—potential implication for arousal and attention.
        Neuroscience. 2001; 104: 643-652
        • Sharma K.V.
        • Koenigsberger C.
        • Brimijoin S.
        • Bigbee J.W.
        Direct evidence for an adhesive function in the noncholinergic role of acetylcholinesterase in neurite outgrowth.
        J Neurosci Res. 2001; 63: 165-175
        • Sklan E.H.
        • Lowenthal A.
        • Korner M.
        • Sklan E.H.
        • Lowenthal A.
        • Korner M.
        • Ritov Y.
        • Landers D.M.
        • Rankinen T.
        • et al.
        Anxiety scores in the Heritage Family Study associate with expression variabilities and polymorphisms in the acetylcholinesterase paraoxonase locus.
        Proc Natl Acad Sci U S A. 2004; 101: 5512-5517
        • Soreq H.
        • Seidman S.
        Acetylcholinesterase—new roles for an old actor.
        Nat Rev Neurosci. 2001; 2: 294-302
        • Sternfeld M.
        • Ming G.
        • Song H.
        • Sela K.
        • Timberg R.
        • Poo M.
        • Soreq H.
        Acetylcholinesterase enhances neurite growth and synapse development through alternative contributions of its hydrolytic capacity, core protein, and variable C termini.
        J Neurosci. 1998; 18: 1240-1249
        • Sternfeld M.
        • Shoham S.
        • Klein O.
        • Flores-Flores C.
        • Evron T.
        • Idelson G.H.
        • et al.
        Excess “read-through” acetylcholinesterase attenuates but the “synaptic” variant intensifies neurodeterioration correlates.
        Proc Natl Acad Sci U S A. 2000; 97: 8647-8652
        • Svensson A.
        • Carlsson M.L.
        • Carlsson A.
        Crucial role of the accumbens nucleus in the neurotransmitter interactions regulating motor control in mice.
        J Neural Trans Gen Sec. 1995; 101: 127-148
        • Takahashi L.K.
        • Goh C.S.
        Presynaptic muscarinic cholinergic receptors in the dorsal hippocampus regulate behavioral inhibition of preweanling rats.
        Brain Res. 1996; 731: 230-235
        • Valtorta F.
        • Leon I.C.
        Molecular mechanisms of neurite extension.
        Philos Trans R Soc Lond B Biol Sci. 1999; 354: 387-394
        • Vizi E.S.
        Modulation of cortical release of acetylcholine by noradrenaline released from nerves arising from the rat locus coeruleus.
        Neuroscience. 1980; 5: 2139-2144
        • Yanahashi S.
        • Hashimoto K.
        • Hattori K.
        • Yuasa S.
        • Iyo M.
        Role of NMDA receptor subtypes in the induction of catalepsy and increase in Fos protein expression after administration of haloperidol.
        Brain Res. 2004; 1011: 84-93
        • Yang C.R.
        • Mogenson G.J.
        An electrophysiological study of the neural projections from the hippocampus to the ventral pallidum and the subpallidal areas by way of the nucleus accumbens.
        Neuroscience. 1985; 15: 1015-1024
        • Yntema O.P.
        • Korf J.
        Transient suppression by stress of haloperidol induced catalepsy by the activation of the adrenal medulla.
        Psychopharmacology. 1987; 91: 131-1345
        • Yoshida H.
        • Matsui T.
        • Yamamoto A.
        • Okada T.
        • Mori K.
        XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor.
        Cell. 2001; 107: 881-891
        • Yoshida Y.
        • Ono T.
        • Kizu A.
        • Fukushima R.
        • Miyagishi T.
        Striatal N-methyl-D-aspartate receptors in haloperidol-induced catalepsy.
        Eur J Pharmacol. 1991; 203: 173-180
        • Zheng J.Q.
        • Felder M.
        • Connor J.A.
        • Poo M.M.
        Turning of nerve growth cones induced by neurotransmitters.
        Nature. 1994; 368: 140-144