Advertisement
Brief report| Volume 60, ISSUE 11, P1278-1281, December 01, 2006

Upregulation of Striatal Dopamine-2 Receptors in Brattleboro Rats with Prepulse Inhibition Deficits

      Background

      Brattleboro rats (BRATs) have natural deficits in prepulse inhibition (PPI) of the startle response similar to those exhibited by schizophrenia patients, which are reversed by antipsychotics. We sought to determine whether they also have increases in striatal dopamine-2 (D2) receptors found in some studies examining the brains of schizophrenia patients.

      Methods

      Several days after startle testing, the brains of BRAT and Long Evans (LE) rats were removed, and D1 and D2 receptor levels were measured by autoradiography.

      Results

      PPI was lower in BRATs consistent with previous reports. D2, but not D1, receptor binding was significantly higher in the nucleus accumbens shell and the dorsomedial caudate of BRAT compared with LE rats, consistent with some findings in schizophrenia patients. Furthermore, individual rat PPI was inversely correlated with D2 binding density.

      Conclusions

      These findings suggest that the dopamine system in BRATs is dysregulated and these abnormalities may contribute to the PPI deficits observed in these rats.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Boer G.J.
        Vasopressin and brain development: Studies using the Brattleboro rat.
        Peptides. 1985; 6: 49-62
        • Bohus B.
        • De Wied D.
        The vasopressin deficient Brattleboro rats: A natural knockout model used in the search for CNS effects of vasopressin.
        Prog Brain Res. 1998; 119: 555-573
        • Chambers R.A.
        • Krystal J.H.
        • Self D.W.
        A neurobiological basis for substance abuse comorbidity in schizophrenia.
        Biol Psychiatry. 2001; 50: 71-83
        • Cooper J.R.
        • Bloom F.E.
        • Roth R.H.
        The Biochemical Basis of Neuropharmacology. 7th edition. Oxford University Press, New York1996
        • Cornish J.L.
        • Wilks D.P.
        • Van den Buuse M.
        A functional interaction between the mesolimbic dopamine system and vasopressin release in the regulation of blood pressure in conscious rats.
        Neuroscience. 1997; 81: 69-78
        • Elman I.
        • Lukas S.
        • Shoaf S.E.
        • Rott D.
        • Adler C.
        • Breier A.
        Effects of acute metabolic stress on the peripheral vasopressinergic system in schizophrenia.
        J Psychopharmacol. 2003; 17: 317-323
        • Feifel D.
        • Melendez G.
        • Shilling P.D.
        Reversal of sensorimotor gating deficits in Brattleboro rats by acute administration of clozapine and a neurotensin agonist, but not haloperidol: A potential predictive model for novel antipsychotic effects.
        Neuropsychopharmacology. 2004; 29: 731-738
        • Feifel D.
        • Priebe K.
        Vasopressin deficient rats exhibit prepulse inhibition deficits that are reversed by subchronic haloperidol.
        Biol Psychiatry. 2001; 50: 425-433
        • Geyer M.A.
        • Krebs-Thomson K.
        • Braff D.L.
        • Swerdlow N.R.
        Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: A decade in review.
        Psychopharmacology (Berl). 2001; 156: 117-154
        • Goto Y.
        • O’Donnell P.
        Delayed mesolimbic system alteration in a developmental animal model of schizophrenia.
        J Neurosci. 2002; 22: 9070-9077
        • Hirvonen J.
        • van Erp T.G.
        • Huttunen J.
        • Aalto S.
        • Nagren K.
        • Huttunen M.
        • et al.
        Increased caudate dopamine D2 receptor availability as a genetic marker for schizophrenia.
        Arch Gen Psychiatry. 2005; 62: 371-378
        • Joyce J.N.
        • Goldsmith S.G.
        • Gurevich E.V.
        Limbic circuits and monoamine receptors: Dissecting the effects of antipsychotics from disease processes.
        J Psychiatr Res. 1997; 31: 197-217
        • Kestler L.P.
        • Walker E.
        • Vega E.M.
        Dopamine receptors in the brains of schizophrenia patients: A meta-analysis of the findings.
        Behav Pharmacol. 2001; 12: 355-371
        • Kishimoto T.
        • Hirai M.
        • Ohsawa H.
        • Terada M.
        • Matsuoka I.
        • Ikawa G.
        Manners of arginine vasopressin secretion in schizophrenic patients—with reference to the mechanism of water intoxication.
        Jpn J Psychiatry Neurol. 1989; 43: 161-169
        • Knable M.B.
        • Egan M.F.
        • Heinz A.
        • Gorey J.
        • Lee K.S.
        • Coppola R.
        • Weinberger D.R.
        Altered dopaminergic function and negative symptoms in drug-free patients with schizophrenia.
        Br J Psychiatry. 1997; 171: 574-577
        • Kodsi M.H.
        • Swerdlow N.R.
        Prepulse inhibition in the rat is regulated by ventral and caudodorsal striato-pallidal circuitry.
        Behav Neurosci. 1995; 109: 912-928
        • Kodsi M.H.
        • Swerdlow N.R.
        Reduced prepulse inhibition after electrolytic lesions of nucleus accumbens subregions in the rat.
        Brain Res. 1997; 773: 45-52
        • Kovacs G.L.
        • Szabo G.
        • Szontagh L.
        • Medve L.
        • Telegdy G.
        • Laszlo F.A.
        Hereditary diabetes insipidus in rats.
        Neuroendocrinology. 1980; 31: 189-193
        • Laruelle M.
        Imaging dopamine transmission in schizophrenia.
        Q J Nucl Med. 1998; 42: 211-221
        • Legros J.J.
        • Gazzotti C.
        • Carvelli T.
        • Franchimont P.
        • Timsit-Berthier M.
        • von Frenckell R.
        • Ansseau M.
        Apomorphine stimulation of vasopressin- and oxytocin-neurophysins.
        Psychoneuroendocrinology. 1992; 17: 611-617
        • O’Donnell P.
        • Grace A.A.
        Dysfunctions in multiple interrelated systems as the neurobiological bases of schizophrenic symptom clusters.
        Schizophr Bull. 1998; 24: 267-283
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotaxic Coordinates. Academic Press, New York1997
        • Seeman P.
        Dopamine receptor sequences.
        Neuropsychopharmacology. 1992; 7: 261-284
        • Segal D.S.
        • Schuckit M.A.
        Animal models of stimulant-induced psychosis.
        in: Creese I. Stimulants: Neurochemical, Behavioral, and Clinical Perspectives. Raven Press, New York1983: 131-167
        • Swerdlow N.R.
        • Mansbach R.S.
        • Geyer M.A.
        • Pulvirenti L.
        • Koob G.F.
        • Braff D.L.
        Amphetamine disruption of prepulse inhibition of acoustic startle is reversed by depletion of mesolimbic dopamine.
        Psychopharmacology (Berl). 1990; 100: 413-416
        • van Heuven-Nolsen D.
        • de Kloet E.R.
        • De Wied D.
        • Versteeg D.H.
        Microinjection of vasopressin and two related peptides into the amygdala: Enhancing effect on local dopamine neurotransmission.
        Brain Res. 1984; 293: 191-195
        • van Heuven-Nolsen D.
        • Versteeg D.H.
        Interaction of vasopressin with the nigro-striatal dopamine system: site and mechanism of action.
        Brain Res. 1985; 337: 269-276
        • Wan F.J.
        • Geyer M.A.
        • Swerdlow N.R.
        Accumbens D2 modulation of sensorimotor gating in rats: Assessing anatomical localization.
        Pharmacol Biochem Behav. 1994; 49: 155-163
        • Wan F.J.
        • Swerdlow N.R.
        Sensorimotor gating in rats is regulated by different dopamine-glutamate interactions in the nucleus accumbens core and shell subregions.
        Brain Res. 1996; 722: 168-176
        • Zakzanis K.K.
        • Hansen K.T.
        Dopamine D2 densities and the schizophrenic brain.
        Schizophr Res. 1998; 32: 201-206