Advertisement
Original article| Volume 60, ISSUE 10, P1139-1146, November 15, 2006

Mood Alters Amygdala Activation to Sad Distractors During an Attentional Task

      Background

      A behavioral hallmark of mood disorders is biased perception and memory for sad events. The amygdala is poised to mediate internal mood and external event processing because of its connections with both the internal milieu and the sensory world. There is little evidence showing that the amygdala’s response to sad sensory stimuli is functionally modulated by mood state, however.

      Methods

      We investigated the impact of mood on amygdala activation evoked by sad and neutral pictures presented as distractors during an attentional oddball task. Healthy adults underwent functional magnetic resonance imaging during task runs that were preceded by sad or happy movie clips. Happy and sad mood induction was conducted within-subjects on consecutive days in counterbalanced order.

      Results

      Amygdala activation to sad distractors was enhanced after viewing sad movies relative to happy ones and was correlated with reaction time costs to detect attentional targets. The activation was higher in female subjects in the right hemisphere. The anterior cingulate, ventromedial and orbital prefrontal cortex, insula, and other posterior regions also showed enhanced responses to sad distractors during sad mood.

      Conclusions

      These findings reveal brain mechanisms that integrate emotional input and current mood state, with implications for understanding cognitive distractibility in depression.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aalto S.
        • Naatanen P.
        • Wallius E.
        • Metsahonkala L.
        • Stenman H.
        • Niem P.M.
        • et al.
        Neuroanatomical substrata of amusement and sadness: A PET activation study using film stimuli.
        Neuroreport. 2002; 13: 67-73
        • Abercrombie H.C.
        • Schaefer S.M.
        • Larson C.L.
        • Oakes T.R.
        • Lindgren K.A.
        • Holden J.E.
        • et al.
        Metabolic rate in the right amygdala predicts negative affect in depressed patients.
        Neuroreport. 1998; 9: 3301-3307
        • Adolphs R.
        Processing of emotional and social information by the human amygdala.
        in: Gazzaniga M.S. The Cognitive Neurosciences. 3rd edition. MIT Press, Cambridge, MA2005: 1017-1030
        • Adolphs R.
        • Damasio H.
        • Tranel D.
        • Damasio A.R.
        Cortical systems for the recognition of emotion in facial expressions.
        J Neurosci. 1996; 16: 7678-7687
        • Adolphs R.
        • Tranel D.
        • Damasio H.
        Emotion recognition from faces and prosody following temporal lobectomy.
        Neuropsychology. 2001; 15: 396-404
        • Amaral D.G.
        • Price J.L.
        • Pitkänen A.
        • Carmichael S.T.
        Anatomical organization of the primate amygdaloid complex.
        in: Aggleton J.P. The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction. Wiley-Liss Press, New York1992: 1-66
        • Anand A.
        • Li Y.
        • Wang Y.
        • Wu J.
        • Gao S.
        • Bukhari L.
        • et al.
        Activity and connectivity of brain mood regulating circuit in depression: A functional magnetic resonance study.
        Biol Psychiatry. 2005; 57: 1079-1088
        • Angrilli A.
        • Mauri A.
        • Palomba D.
        • Flor H.
        • Birbaumer N.
        • Sartori G.
        • di Paola F.R.
        Startle reflex and emotion modulation impairment after a right amygdala lesion.
        Brain. 1996; 119: 1991-2000
        • Asthana H.S.
        • Mandal M.K.
        Hemifacial asymmetry in emotion expressions.
        Behav Modif. 1998; 22: 177-183
        • Baker S.C.
        • Frith C.D.
        • Dolan R.J.
        The interaction between mood and cognitive function studied with PET.
        Psychol Med. 1997; 27: 565-578
        • Beyer J.L.
        • Krishnan K.R.R.
        Volumetric brain imaging findings in mood disorders.
        Bipolar Disord. 2002; 4: 89-104
        • Blair R.J.
        • Morris J.S.
        • Frith C.D.
        • Perrett D.I.
        • Dolan R.J.
        Dissociable neural responses to facial expressions of sadness and anger.
        Brain. 1999; 122: 883-893
        • Brierley B.
        • Shaw P.
        • David S.
        The human amygdala: A systematic review and meta-analysis of volumetric magnetic resonance imaging.
        Brain Res Brain Res Rev. 2002; 39: 84-105
        • Cahill L.
        • Uncapher M.
        • Kilpatrick L.
        • Alkire M.T.
        • Turner J.
        Sex-related hemispheric lateralization of amygdala function in emotionally influenced memory: An FMRI investigation.
        Learn Mem. 2004; 11: 261-266
        • Canli T.
        • Desmond J.E.
        • Zhao Z.
        • Gabrieli J.D.E.
        Sex differences in the neural basis of emotional memories.
        Proc Natl Acad Sci U S A. 2002; 99: 10789-10794
        • Critchley H.D.
        • Wiens S.
        • Rotshtein P.
        • Öhman A.
        • Dolan R.J.
        Neural systems supporting interoceptive awareness.
        Nat Neurosci. 2004; 7: 189-195
        • Davidson R.J.
        • Ekman P.
        • Saron C.D.
        • Senulis J.A.
        • Friesen W.V.
        Approach–withdrawal and cerebral asymmetry: Emotional expression and brain physiology.I.
        J Pers Soc Psychol. 1990; 58: 330-341
        • Davidson R.J.
        • Irwin W.
        • Anderle M.J.
        • Kalin N.H.
        The neural substrates of affective processing in depressed patients treated with venlafaxine.
        Am J Psychiatry. 2003; 160: 64-75
        • Dolan R.J.
        Emotion, cognition and behavior.
        Science. 2002; 298: 1191-1194
        • Drevets W.C.
        Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression.
        Prog Brain Res. 2000; 126: 413-431
        • Drevets W.C.
        Neuroimaging abnormalities in the amygdala in mood disorders.
        Ann N Y Acad Sci. 2003; 985: 420-444
        • Drevets W.C.
        • Price J.L.
        • Simpson Jr, J.R.
        • Todd R.D.
        • Reich T.
        • Vannier M.
        • Raichle M.E.
        Subgenual prefrontal cortex abnormalities in mood disorders.
        Nature. 1997; 386: 824-827
        • Elliott R.
        • Rubinsztein J.S.
        • Sahakian B.J.
        • Dolan R.J.
        The neural basis of mood-congruent processing biases in depression.
        Arch Gen Psychiatry. 2002; 59: 597-604
        • Fu C.H.
        • Williams S.C.
        • Cleare A.J.
        • Brammer M.J.
        • Walsh N.D.
        • Kim J.
        • et al.
        Attenuation of the neural response to sad faces in major depression by antidepressant treatment: A prospective, event-related functional magnetic resonance imaging study.
        Arch Gen Psychiatry. 2004; 61: 877-889
        • George M.S.
        • Ketter T.A.
        • Parekh P.I.
        • Herscovitch P.
        • Post R.M.
        Gender differences in regional cerebral blood flow during transient self-induced sadness or happiness.
        Biol Psychiatry. 1996; 40: 859-871
        • Gove W.R.
        • Tudor J.F.
        Adult sex roles and mental illness.
        AJS. 1973; 78: 812-835
        • Grossman M.
        • Wood W.
        Sex differences in intensity of emotional experience: A social role interpretation.
        J Pers Soc Psychol. 1993; 65: 1010-1022
        • Hamann S.B.
        • Canli T.
        Individual differences in emotion processing.
        Curr Opin Neurobiol. 2004; 14: 233-238
        • Hamann S.B.
        • Ely T.D.
        • Hoffman J.M.
        • Kilts C.D.
        Ecstasy and agony: Activation of the human amygdala in positive and negative emotion.
        Psychol Sci. 2002; 13: 135-141
        • Holsen L.M.
        • Zarcone J.R.
        • Thompson T.I.
        • Brooks W.M.
        • Anderson M.F.
        • Ahluwalia J.S.
        • et al.
        Neural mechanisms underlying food motivation in children and adolescents.
        NeuroImage. 2005; 27: 669-676
        • Heller W.
        The neuropsychology of emotion: Developmental patterns and implications for psychopathology.
        in: Stein N.L. Leventhal B. Trabasso T. Psychological and biological approaches to emotion. Erlbaum, Hillsdale NJ1990: 167-211
        • Irwin W.
        • Anderle M.J.
        • Abercrombie H.C.
        • Schaefer S.M.
        • Kalin N.H.
        • Davidson R.J.
        Amygdalar interhemispheric functional connectivity differs between the non-depressed and depressed human brain.
        NeuroImage. 2004; 21: 674-686
        • Killgore W.D.
        • Yurgelun-Todd D.A.
        Sex differences in amygdala activation during the perception of facial affect.
        Neuroreport. 2001; 12: 2543-2547
        • Klein S.
        • Smolka M.N.
        • Wrase J.
        • Gruesser S.M.
        • Mann K.
        • Braus D.F.
        • et al.
        The influence of gender and emotional valence of visual cues on fMRI activation in humans.
        Pharmacopsychiatry. 2003; 26: S191-S194
        • LaBar K.S.
        • Gitelman D.R.
        • Mesulam M.M.
        • Parrish T.B.
        Impact of signal-to-noise on functional MRI of the human amygdala.
        Neuroreport. 2001; 12: 3461-3464
        • LaBar K.S.
        • Gitelman D.R.
        • Parrish T.B.
        • Kim Y.H.
        • Nobre A.C.
        • Mesulam M.M.
        Hunger selectively modulates corticolimbic activation to food stimuli in humans.
        Behav Neurosci. 2001; 115: 493-500
        • Lane R.D.
        • Reiman E.M.
        • Ahern G.L.
        • Schwartz G.E.
        • Davidson R.J.
        Neuroanatomical correlates of happiness, sadness, and disgust.
        Am J Psychiatry. 1997; 154: 926-933
        • Lane R.D.
        • E. Reiman E.M.
        • Bradley M.M.
        • Lang P.J.
        • Ahern G.L.
        • Davidson R.J.
        Neuroanatomical correlates of pleasant and unpleasant emotion.
        Neuropsychologia. 1997; 35: 1437-1444
        • LeDoux J.E.
        The Emotional Brain: The Mysterious Underpinnings of Emotional Life. Simon & Schuster, New York1996
        • Lévesque J.
        • Eugene F.
        • Joanette Y.
        • Paquette V.
        • Mensour B.
        • Beaudoin G.
        • et al.
        Neural circuitry underlying voluntary suppression of sadness.
        Biol Psychiatry. 2003; 53: 502-510
        • Lewis P.
        • Critchley H.D.
        • Smith A.P.
        • Dolan R.J.
        Brain mechanisms for mood congruent memory facilitation.
        NeuroImage. 2005; 25: 1214-1223
        • Liotti M.
        • Mayberg H.S.
        • Brannan S.K.
        • McGinnis S.
        • Jerabek P.
        • Fox P.T.
        Differential limbic-cortical correlates of sadness and anxiety in healthy subjects: Implications for affective disorders.
        Biol Psychiatry. 2000; 48: 30-42
        • Malkova L.
        • Gaffan D.
        • Murray E.A.
        Excitotoxic lesions of the amygdala fail to produce impairment in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys.
        J Neurosci. 1997; 17: 6011-6020
        • Mayberg H.S.
        Limbic-cortical dysregulation: A proposed model of depression.
        J Neuropsychiatry Clin Neurosci. 1997; 9: 471-481
        • Mayberg H.S.
        • Liotti M.
        • Brannan S.K.
        • McGinnis S.
        • Mahurin R.K.
        • Jerabek P.A.
        • et al.
        Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness.
        Am J Psychiatry. 1999; 156: 675-682
        • Mineka S.
        • Nugent K.
        Mood-congruent memory biases in anxiety and depression.
        in: Schacter D.L. Memory Distortion: How Minds, Brains, and Societies Reconstruct the Past. Harvard University Press, Cambridge, MA1995: 173-193
        • Niedenthal P.M.
        • Halberstadt J.B.
        • Margolin J.
        • Innes-Ker A.H.
        Emotional state and the detection of change in facial expression of emotion.
        Eur J Soc Psychol. 2000; 30: 211-222
        • Nolen-Hoeksema S.
        • Morrow J.
        • Fredrickson B.L.
        Response styles and the duration of episodes of depressed mood.
        J Abnorm Psychol. 1993; 102: 20-28
        • Ongur D.
        • Price J.L.
        The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans.
        Cereb Cortex. 2000; 10: 206-219
        • Phelps E.A.
        Human emotion and memory: Interactions of the amygdala and hippocampal complex.
        Curr Opin Neurobiol. 2004; 14: 198-202
        • Phillips M.L.
        • Bullmore E.T.
        • Howard R.
        • Woodruff P.W.R.
        • Wright C.I.
        • Williams S.C.R.
        • et al.
        Investigation of facial recognition memory and happy and sad facial expression perception: An fMRI study.
        Psychiatr Res. 1998; 83: 127-138
        • Phillips M.L.
        • Drevets W.C.
        • Rauch S.L.
        • Lane R.
        Neurobiology of emotion perception II: The neural basis of normal emotion perception.
        Biol Psychiatry. 2003; 54: 515-528
        • Pickens C.L.
        • Saddoris M.P.
        • Setlow B.
        • Gallagher M.
        • Holland P.C.
        • Schoenbaum G.
        Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task.
        J Neurosci. 2003; 23: 11078-11084
        • Posse S.
        • Fitzgerald D.
        • Gao K.
        • Habel U.
        • Rosenberg D.
        • Moore G.J.
        • et al.
        Real-time fMRI of temporolimbic regions detects amygdala activation during single-trial self-induced sadness.
        Neuroimage. 2003; 18: 760-768
        • Reiman E.M.
        • Lane R.D.
        • Ahern G.L.
        • Schwartz G.E.
        • Davidson R.J.
        • Friston K.J.
        • et al.
        Neuroanatomical correlates of externally and internally generated human emotion.
        Am J Psychiatry. 1997; 154: 918-925
        • Schneider F.
        • Grodd W.
        • Weiss U.
        • Klose U.
        • Mayer K.R.
        • et al.
        Functional MRI reveals left amygdala activation during emotion.
        Psychiatry Res. 1997; 76: 75-82
        • Seibert P.S.
        • Ellis H.C.
        Irrelevant thoughts, emotional mood states, and cognitive task performance.
        Mem Cogn. 1991; 19: 507-513
        • Sheline Y.I.
        • Barch D.M.
        • Donnelly J.M.
        • Ollinger J.M.
        • Snyder A.Z.
        • Mintun M.A.
        Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: An fMRI study.
        Biol Psychiatry. 2001; 50: 651-658
        • Siegle G.J.
        • Granholm E.
        • Ingram R.E.
        • Matt G.E.
        Pupillary and reaction time measures of sustained processing of negative information in depression.
        Biol Psychiatry. 2001; 49: 624-636
        • Siegle G.J.
        • Steinhauer S.R.
        • Thase M.E.
        • Stenger V.A.
        • Carter C.S.
        Can’t shake that feeling: Event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals.
        Biol Psychiatry. 2002; 51: 693-707
        • Silberman E.K.
        • Weingartner H.
        Hemispheric lateralization of functions related to emotion.
        Brain Cogn. 1986; 5: 322-353
        • Wang L.
        • McCarthy G.
        • Song A.
        • LaBar K.S.
        Amygdala activation to sad pictures during high-field (4 Tesla) functional magnetic resonance imaging.
        Emotion. 2005; 5: 12-22
        • Yamasaki H.
        • LaBar K.S.
        • McCarthy G.
        Dissociable prefrontal brain systems for attention and emotion.
        Proc Natl Acad Sci U S A. 2002; 91: 11447-11451