Advertisement
Original article| Volume 60, ISSUE 5, P444-453, September 01, 2006

Regional White Matter and Neuropsychological Functioning across the Adult Lifespan

      Background

      The current study utilized magnetic resonance imaging (MRI) to more fully elucidate the relationship among age, regional white matter, and neuropsychological functioning.

      Methods

      One hundred ninety-nine neurologically healthy adults received MRI and standardized neuropsychological assessment. MR images were spatially normalized and segmented by tissue type; relative white matter values in each of the four cerebral lobes in each hemisphere were computed. Subjects were divided into Younger (ages 21–30), Middle (ages 31–54), and Older (ages 55–79) age groups.

      Results

      The Older group had significantly less overall relative white matter than the Middle group, who had significantly less overall relative white matter than the Younger participants (F (2, 193) = 5.42, p = 0.005). Differences in frontal lobe white matter were of largest magnitude, followed by temporal lobe (F (6, 579) = 3.32, p = 0.003). Age and frontal and temporal lobe white matter were primarily associated with performance on neuropsychological tests of executive functioning and memory. Mediational analysis suggested that frontal lobe white matter mediated the relationship between age and performance on tasks of executive functioning and memory.

      Conclusions

      The results confirm age-associated decline in frontal and temporal white matter, and age-related cognitive decline in several domains. Decline in neuropsychological functioning is, in part, mediated by a relative age-related reduction in frontal white matter.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Albert M.
        Neuropsychological and neurophysiological changes in healthy adult humans across the age range.
        Neurobiol Aging. 1993; 14: 623-625
        • Army Individual Battery
        The Manual of Directions and Scoring. War Department, Adjutant General’s Office, Washington, DC1944
        • Ashburner J.
        • Friston K.J.
        Voxel-based morphometry–the methods.
        Neuroimage. 2000; 11: 805-821
        • Band G.P.
        • Ridderinkhof K.R.
        • Segalowitz S.
        Explaining neurocognitive aging.
        Brain Cogn. 2002; 49: 259-267
        • Baron R.M.
        • Kenny D.A.
        The moderator-mediator variable distinction in social psychological research.
        J Pers Soc Psychol. 1986; 51: 1173-1182
        • Bartzokis G.
        Age-related myelin breakdown.
        Neurobiol Aging. 2004; 25 (author reply 49–62): 5-18
        • Bartzokis G.
        • Cummings J.L.
        • Sultzer D.
        • Henderson V.W.
        • Nuechterlein K.H.
        • Mintz J.
        White matter structural integrity in healthy aging adults and patients with Alzheimer disease.
        Arch Neurol. 2003; 60: 393-398
        • Bookstein F.L.
        “Voxel-based morphometry” should not be used with imperfectly registered images.
        Neuroimage. 2001; 14: 1454-1462
        • Brickman A.M.
        • Buchsbaum M.S.
        • Shihabuddin L.
        • Hazlett E.A.
        • Borod J.C.
        • Mohs R.C.
        Striatal size, glucose metabolic rate, and verbal learning in normal aging.
        Brain Res Cogn Brain Res. 2003; 17: 106-116
        • Brickman A.M.
        • Paul R.H.
        • Cohen R.A.
        • Williams L.
        • MacGregor K.L.
        • Jefferson A.L.
        • et al.
        Semantic and phonemic verbal fluency across the adult lifespan.
        Arch Clin Neuropsychology. 2005; 20: 561-573
        • Brody H.
        Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex.
        J Comp Neurol. 1955; 102: 511-516
        • Brown J.W.
        • Jaffe J.
        Hypothesis on cerebral dominance.
        Neuropsychologia. 1975; 13: 107-110
        • Cabeza R.
        Hemispheric asymmetry reduction in older adults.
        Psychol Aging. 2002; 17: 85-100
        • Richard Clark C.
        • Veltmeyer M.D.
        • Hamilton R.J.
        • Simms E.
        • Paul R.
        • Hermens D.
        • Gordon E.
        Spontaneous alpha peak frequency predicts working memory performance across age span.
        Int J Psychophysiology. 2004; 53: 1-9
        • Coffey C.E.
        • Lucke J.F.
        • Saxton J.A.
        • Ratcliff G.
        • Unitas L.J.
        • Billig B.
        • Bryan R.N.
        Sex differences in brain aging.
        Arch Neurol. 1998; 55: 169-179
        • Coffey C.E.
        • Wilkinson W.E.
        • Parashos I.A.
        • Soady S.A.
        • Sullivan R.J.
        • Patterson L.J.
        • et al.
        Quantitative cerebral anatomy of the aging human brain.
        Neurology. 1992; 42: 527-536
        • Cook I.A.
        • Leuchter A.F.
        • Morgan M.L.
        • Conlee E.W.
        • David S.
        • Lufkin R.
        • et al.
        Cognitive and physiologic correlates of subclinical structural brain disease in elderly healthy control subjects.
        Arch Neurol. 2002; 59: 1612-1620
        • Courchesne E.
        • Chisum H.J.
        • Townsend J.
        • Cowles A.
        • Covington J.
        • Egaas B.
        • et al.
        Normal brain development and aging.
        Radiology. 2000; 216: 672-682
        • DeCarli C.
        • Massaro J.
        • Harvey D.
        • Hald J.
        • Tullberg M.
        • Au R.
        • et al.
        Measures of brain morphology and infarction in the framingham heart study.
        Neurobiol Aging. 2005; 26: 491-510
        • Dolcos F.
        • Rice H.J.
        • Cabeza R.
        Hemispheric asymmetry and aging.
        Neurosci Biobehav Rev. 2002; 26: 819-825
        • Friston K.J.
        • Holmes A.
        • Poline J.B.
        • Price C.J.
        • Frith C.D.
        Detecting activations in PET and fMRI.
        Neuroimage. 1996; 4: 223-235
        • Golden C.
        Stroop color and word task. Stoeling, Wood Dale1978
        • Good C.D.
        • Johnsrude I.S.
        • Ashburner J.
        • Henson R.N.
        • Friston K.J.
        • Frackowiak R.S.
        A voxel-based morphometric study of ageing in 465 normal adult human brains.
        Neuroimage. 2001; 14: 21-36
        • Gordon E.
        Integrative neuroscience and psychiatry.
        Neuropsychopharmacology. 2003; 28: S2-S8
        • Gordon E.
        • Cooper N.
        • Rennie C.
        • Hermens D.
        • Williams L.M.
        Integrative neuroscience.
        Clinical EEG and Neuroscience. 2005; 36: 64-75
        • Greenwood P.M.
        The frontal aging hypothesis evaluated.
        J Int Neuropsychol Soc. 2000; 6: 705-726
        • Grieve S.M.
        • Clark C.R.
        • Williams L.M.
        • Peduto A.J.
        • Gordon E.
        Preservation of limbic and paralimbic structures in aging.
        Hum Brain Mapp. 2005; 25: 391-401
        • Gunning-Dixon F.M.
        • Raz N.
        The cognitive correlates of white matter abnormalities in normal aging.
        Neuropsychology. 2000; 14: 224-232
        • Gunning-Dixon F.M.
        • Raz N.
        Neuroanatomical correlates of selected executive functions in middle-aged and older adults.
        Neuropsychologia. 2003; 41: 1929-1941
        • Gur R.C.
        • Mozley P.D.
        • Resnick S.M.
        • Gottlieb G.L.
        • Kohn M.
        • Zimmerman R.
        • et al.
        Gender differences in age effect on brain atrophy measured by magnetic resonance imaging.
        Proc Natl Acad Sci U S A. 1991; 88: 2845-2849
        • Guttmann C.R.
        • Jolesz F.A.
        • Kikinis R.
        • Killiany R.J.
        • Moss M.B.
        • Sandor T.
        • Albert M.S.
        White matter changes with normal aging.
        Neurology. 1998; 50: 972-978
        • Haug H.
        • Eggers R.
        Morphometry of the human cortex cerebri and corpus striatum during aging.
        Neurobiol Aging. 1991; 12 (discussion 352–355): 336-338
        • Hickie I.
        • Hadzi-Pavlovic D.
        • Scott E.
        • Davenport T.
        • Koschera A.
        • Naismith S.
        SPHERE.
        Australasian Psychiatry. 1998; 6: 248-250
        • Hickie I.B.
        • Davenport T.A.
        • Hadzi-Pavlovic D.
        • Koschera A.
        • Naismith S.L.
        • Scott E.M.
        • Wilhelm K.A.
        Development of a simple screening tool for common mental disorders in general practice.
        Med J Australia. 2001; 175: S10-S17
        • Hildebrand C.
        • Remahl S.
        • Persson H.
        • Bjartmar C.
        Myelinated nerve fibres in the CNS.
        Prog Neurobiol. 1993; 40: 319-384
        • Jernigan T.L.
        • Archibald S.L.
        • Fennema-Notestine C.
        • Gamst A.C.
        • Stout J.C.
        • Bonner J.
        • Hesselink J.R.
        Effects of age on tissues and regions of the cerebrum and cerebellum.
        Neurobiol Aging. 2001; 22: 581-594
        • Murphy D.G.
        • DeCarli C.
        • McIntosh A.R.
        • Daly E.
        • Mentis M.J.
        • Pietrini P.
        • et al.
        Sex differences in human brain morphometry and metabolism.
        Arch Gen Psychiatry. 1996; 53: 585-594
        • Nieuwenhuys R.
        Structure and organization of fibre systems.
        in: Nieuwenbuys R. Tendokelaar H. Nicholson C. The Central Nervous System of Vertebrates. Vol 1. Springer, Berlin1999: 113-157
        • Nusbaum A.O.
        • Tang C.Y.
        • Buchsbaum M.S.
        • Wei T.C.
        • Atlas S.W.
        Regional and global changes in cerebral diffusion with normal aging.
        AJNR Am J Neuroradiol. 2001; 22: 136-142
        • Paul R.H.
        • Haque O.
        • Gunstad J.
        • Tate D.F.
        • Grieve S.M.
        • Hoth K.
        • et al.
        Subcortical hyperintensities impact cognitive function among a select subset of healthy elderly.
        Arch Clin Neuropsychology. 2005; 20: 697-704
      1. Paul RH, Brickman AM, Williams LM, Niaura R, Cohen R, Pogun S, et al (in press): Cognitive impact of cigarette smoking in young and old healthy adults: data from the International Brain Database. J Clin Neuroscience.

        • Paul R.H.
        • Lawrence J.
        • Williams L.M.
        • Richard C.C.
        • Cooper N.
        • Gordon E.
        Preliminary validity of “integneuro”.
        Int J Neurosci. 2005; 115: 1549-1567
        • Paus T.
        • Collins D.L.
        • Evans A.C.
        • Leonard G.
        • Pike B.
        • Zijdenbos A.
        Maturation of white matter in the human brain.
        Brain Res Bull. 2001; 54: 255-266
        • Peters A.
        The effects of normal aging on myelin and nerve fibers.
        J Neurocytol. 2002; 31: 581-593
        • Pfefferbaum A.
        • Sullivan E.V.
        • Rosenbloom M.J.
        • Mathalon D.H.
        • Lim K.O.
        A controlled study of cortical gray matter and ventricular changes in alcoholic men over a 5-year interval.
        Arch Gen Psychiatry. 1998; 55: 905-912
        • Raz N.
        • Gunning F.M.
        • Head D.
        • Dupuis J.H.
        • McQuain J.
        • Briggs S.D.
        • et al.
        Selective aging of the human cerebral cortex observed in vivo.
        Cereb Cortex. 1997; 7: 268-282
        • Raz N.
        • Gunning-Dixon F.
        • Head D.
        • Rodrigue K.M.
        • Williamson A.
        • Acker J.D.
        Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex.
        Neurobiol Aging. 2004; 25: 377-396
        • Raz N.
        • Lindenberger U.
        • Rodrigue K.M.
        • Kennedy K.M.
        • Head D.
        • Williamson A.
        • et al.
        Regional brain changes in aging healthy adults.
        Cereb Cortex. 2005; 15: 1676-1689
        • Resnick S.M.
        • Goldszal A.F.
        • Davatzikos C.
        • Golski S.
        • Kraut M.A.
        • Metter E.J.
        • et al.
        One-year age changes in MRI brain volumes in older adults.
        Cereb Cortex. 2000; 10: 464-472
        • Resnick S.M.
        • Pham D.L.
        • Kraut M.A.
        • Zonderman A.B.
        • Davatzikos C.
        Longitudinal magnetic resonance imaging studies of older adults.
        J Neurosci. 2003; 23: 3295-3301
        • Rodrigue K.M.
        • Kennedy K.M.
        • Raz N.
        Aging and longitudinal change in perceptual-motor skill acquisition in healthy adults.
        J Gerontol B Psychol Sci Soc Sci. 2005; 60: P174-P181
        • Salat D.H.
        • Buckner R.L.
        • Snyder A.Z.
        • Greve D.N.
        • Desikan R.S.
        • Busa E.
        • et al.
        Thinning of the cerebral cortex in aging.
        Cereb Cortex. 2004; 14: 721-730
        • Salat D.H.
        • Kaye J.A.
        • Janowsky J.S.
        Selective preservation and degeneration within the prefrontal cortex in aging and Alzheimer disease.
        Arch Neurol. 2001; 58: 1403-1408
        • Salmond C.H.
        • Ashburner J.
        • Vargha-Khadem F.
        • Connelly A.
        • Gadian D.G.
        • Friston K.J.
        The precision of anatomical normalization in the medial temporal lobe using spatial basis functions.
        Neuroimage. 2002; 17: 507-512
        • Scahill R.I.
        • Frost C.
        • Jenkins R.
        • Whitwell J.L.
        • Rossor M.N.
        • Fox N.C.
        A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging.
        Arch Neurol. 2003; 60: 989-994
        • Schretlen D.
        • Pearlson G.D.
        • Anthony J.C.
        • Aylward E.H.
        • Augustine A.M.
        • Davis A.
        • Barta P.
        Elucidating the contributions of processing speed, executive ability, and frontal lobe volume to normal age-related differences in fluid intelligence.
        J Int Neuropsychol Soc. 2000; 6: 52-61
        • Stern Y.
        What is cognitive reserve? Theory and research application of the reserve concept.
        J Int Neuropsychol Soc. 2002; 8: 448-460
        • Stern Y.
        The concept of cognitive reserve.
        J Clin Exp Neuropsychol. 2003; 25: 589-593
        • Tang Y.
        • Whitman G.T.
        • Lopez I.
        • Baloh R.W.
        Brain volume changes on longitudinal magnetic resonance imaging in normal older people.
        J Neuroimaging. 2001; 11: 393-400
        • Tapp P.D.
        • Siwak C.T.
        • Gao F.Q.
        • Chiou J.Y.
        • Black S.E.
        • Head E.
        • et al.
        Frontal lobe volume, function, and beta-amyloid pathology in a canine model of aging.
        J Neurosci. 2004; 24: 8205-8213
        • Tisserand D.J.
        • Pruessner J.C.
        • Sanz Arigita E.J.
        • van Boxtel M.P.
        • Evans A.C.
        • Jolles J.
        • Uylings H.B.
        Regional frontal cortical volumes decrease differentially in aging.
        Neuroimage. 2002; 17: 657-669
        • Tisserand D.J.
        • van Boxtel M.P.
        • Pruessner J.C.
        • Hofman P.
        • Evans A.C.
        • Jolles J.
        A voxel-based morphometric study to determine individual differences in gray matter density associated with age and cognitive change over time.
        Cereb Cortex. 2004; 14: 966-973
        • Tzourio-Mazoyer N.
        • Landeau B.
        • Papathanassiou D.
        • Crivello F.
        • Etard O.
        • Delcroix N.
        • et al.
        Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
        Neuroimage. 2002; 15: 273-289
        • Walhovd K.B.
        • Fjell A.M.
        • Reinvang I.
        • Lundervold A.
        • Dale A.M.
        • Eilertsen D.E.
        • et al.
        Effects of age on volumes of cortex, white matter and subcortical structures.
        Neurobiol Aging. 2005; 26 (discussion 1275–1278): 1261-1270
        • Walhovd K.B.
        • Fjell A.M.
        • Reinvang I.
        • Lundervold A.
        • Dale A.M.
        • Quinn B.T.
        • et al.
        Neuroanatomical aging.
        Neurobiol Aging. 2005; 26: 1279-1282
        • West R.
        In defense of the frontal lobe hypothesis of cognitive aging.
        J Int Neuropsychol Soc. 2000; 6 (discussion 730): 727-729
        • West R.L.
        An application of prefrontal cortex function theory to cognitive aging.
        Psychol Bull. 1996; 120: 272-292
        • Williams L.M.
        • Simms E.
        • Clark C.R.
        • Paul R.H.
        • Rowe D.
        • Gordon E.
        The test-retest reliability of a standardized neurocognitive and neurophysiological test battery.
        Int J Neurosci. 2005; 115: 1605-1630
        • Xu J.
        • Kobayashi S.
        • Yamaguchi S.
        • Iijima K.
        • Okada K.
        • Yamashita K.
        Gender effects on age-related changes in brain structure.
        AJNR Am J Neuroradiol. 2000; 21: 112-118