Advertisement

Striatal Dysfunction in Schizophrenia and Unaffected Relatives

  • Matthijs Vink
    Affiliations
    Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan, Utrecht, the Netherlands.
    Search for articles by this author
  • Nick F. Ramsey
    Correspondence
    Address reprints requests to Nick F. Ramsey, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Department of Psychiatry, Heidelberglaan 100, 3584CX Utrecht, the Netherlands.
    Affiliations
    Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan, Utrecht, the Netherlands.
    Search for articles by this author
  • Mathijs Raemaekers
    Affiliations
    Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan, Utrecht, the Netherlands.
    Search for articles by this author
  • René S. Kahn
    Affiliations
    Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan, Utrecht, the Netherlands.
    Search for articles by this author

      Background

      Schizophrenia has been frequently associated with impaired inhibitory control. Such control is known to involve the striatum. Here, we investigate whether impaired inhibitory control is associated with abnormal striatal activation in schizophrenia. First-degree relatives of patients were also tested to examine whether striatal abnormality is associated with schizophrenia, or with the risk for the illness.

      Methods

      Both functional MRI and behavioral data were acquired during a task designed to invoke inhibitory control in 21 patients, 15 unaffected siblings, and 36 matched controls. Subjects must refrain from responding to designated stop cues occurring within a series of motor cues. Subjects could anticipate the occurrence of stop cues as the likelihood of these cues increased in a linear fashion throughout the task.

      Results

      Control subjects showed striatal activation while responding to motor cues. This activation increased in a linear fashion when the likelihood of having to inhibit the response was increased. Both patients siblings did not show anticipation-related increase in either striatal activation. However, only patients showed behavioral impairments.

      Conclusions

      Striatal abnormalities occur in schizophrenia patients and unaffected siblings. Thus striatal abnormalities may be related to an increased (genetic) risk to develop schizophrenia.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adler L.E.
        • Pachtman E.
        • Franks R.D.
        • Pecevich M.
        • Waldo M.C.
        • Freedman R.
        Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia.
        Biol Psychiatry. 1982; 17: 639-654
        • Alexander G.E.
        • DeLong M.R.
        • Strick P.L.
        Parallel organization of functionally segregated circuits linking basal ganglia and cortex.
        Annu Rev Neurosci. 1986; 9: 357-381
        • Andreasen N.C.
        The diagnosis of schizophrenia.
        Schizophr Bull. 1987; 13: 9-22
        • Badgaiyan R.D.
        • Posner M.I.
        Mapping the cingulate cortex in response selection and monitoring.
        Neuroimage. 1998; 7: 255-260
        • Bleuler E.
        Dementia Praecox or the Group of Schizophrenias. International Universities Press, New York1911
        • Braff D.L.
        • Geyer M.A.
        • Light G.A.
        • Sprock J.
        • Perry W.
        • Cadenhead K.S.
        • et al.
        Impact of prepulse characteristics on the detection of sensorimotor gating deficits in schizophrenia.
        Schizophr Res. 2001; 49: 171-178
        • Cadenhead K.S.
        • Swerdlow N.R.
        • Shafer K.M.
        • Diaz M.
        • Braff D.L.
        Modulation of the startle response and startle laterality in relatives of schizophrenic patients and in subjects with schizotypal personality disorder.
        Am J Psychiatry. 2000; 157: 1660-1668
        • Carter C.S.
        • Braver T.S.
        • Barch D.M.
        • Botvinick M.M.
        • Noll D.
        • Cohen J.D.
        Anterior cingulate cortex, error detection, and the online monitoring of performance.
        Science. 1998; 280: 747-749
        • Clementz B.A.
        • Geyer M.A.
        • Braff D.L.
        Poor P50 suppression among schizophrenia patients and their first-degree biological relatives.
        Am J Psychiatry. 1998; 155: 1691-1694
        • Corson P.W.
        • O’Leary D.S.
        • Miller S.D.
        • Andreasen N.C.
        The effects of neuroleptic medications on basal ganglia blood flow in schizophreniform disorders.
        Biol Psychiatry. 2002; 52: 855-862
        • Crawford T.J.
        • Bennett D.
        • Lekwuwa G.
        • Shaunak S.
        • Deakin J.F.
        Cognition and the inhibitory control of saccades in schizophrenia and Parkinson’s disease.
        Prog Brain Res. 2002; 140: 449-466
        • Crawford T.J.
        • Haeger B.
        • Kennard C.
        • Reveley M.A.
        • Henderson L.
        Saccadic abnormalities in psychotic patients. I. Neuroleptic-free psychotic patients.
        Psychol Med. 1995; 25: 461-471
        • Ford J.M.
        • Gray M.
        • Whitfield S.L.
        • Turken A.U.
        • Glover G.
        • Faustman W.O.
        • et al.
        Acquiring and inhibiting prepotent responses in schizophrenia.
        Arch Gen Psychiatry. 2004; 61: 119-129
        • Fukushima J.
        • Fukushima K.
        • Chiba T.
        • Tanaka S.
        • Yamashita I.
        • Kato M.
        Disturbances of voluntary control of saccadic eye movements in schizophrenic patients.
        Biol Psychiatry. 1988; 23: 670-677
        • Fukushima J.
        • Fukushima K.
        • Morita N.
        • Yamashita I.
        Further analysis of the control of voluntary saccadic eye movements in schizophrenic patients.
        Biol Psychiatry. 1990; 28: 943-958
        • Garavan H.
        • Ross T.J.
        • Murphy K.
        • Roche R.A.
        • Stein E.A.
        Dissociable executive functions in the dynamic control of behavior.
        Neuroimage. 2002; 17: 1820-1829
        • Gunduz H.
        • Wu H.
        • Ashtari M.
        • Bogerts B.
        • Crandall D.
        • Robinson D.G.
        • et al.
        Basal ganglia volumes in first-episode schizophrenia and healthy comparison subjects.
        Biol Psychiatry. 2002; 51: 801-808
        • Ha T.H.
        • Youn T.
        • Ha K.S.
        • Rho K.S.
        • Lee J.M.
        • Kim I.Y.
        • et al.
        Gray matter abnormalities in paranoid schizophrenia and their clinical correlations.
        Psychiatry Res. 2004; 132: 251-260
        • Heimberg D.R.
        • Naber G.
        • Hemmeter U.
        • Zechner S.
        • Witzke W.
        • Gerhard U.
        • et al.
        Contingent negative variation and attention in schizophrenic and depressed patients.
        Neuropsychobiology. 1999; 39: 131-140
        • Henik A.
        • Carter C.S.
        • Salo R.
        • Chaderjian M.
        • Kraft L.
        • Nordahl T.E.
        • et al.
        Attentional control and word inhibition in schizophrenia.
        Psychiatry Res. 2002; 110: 137-149
        • Joyce J.N.
        • Goldsmith S.G.
        • Gurevich E.V.
        Limbic circuits and monoamine receptors.
        J Psychiatr Res. 1997; 31: 197-217
        • Kaji R.
        Basal ganglia as a sensory gating devise for motor control.
        J Med Invest. 2001; 48: 142-146
        • Kiehl K.A.
        • Smith A.M.
        • Hare R.D.
        • Liddle P.F.
        An event-related potential investigation of response inhibition in schizophrenia and psychopathy.
        Biol Psychiatry. 2000; 48: 210-221
        • Kumari V.
        • Gray J.A.
        • Honey G.D.
        • Soni W.
        • Bullmore E.T.
        • Williams S.C.
        • et al.
        Procedural learning in schizophrenia.
        Schizophr Res. 2002; 57: 97-107
        • Lipska B.K.
        Using animal models to test a neurodevelopmental hypothesis of schizophrenia.
        J Psychiatry Neurosci. 2004; 29: 282-286
        • Logan G.D.
        • Cowan W.B.
        On the ability to inhibit thought and action.
        Psychological Review. 1984; 91: 295-327
        • Lubow R.E.
        • Weiner I.
        • Schlossberg A.
        • Baruch I.
        Latent inhibition and schizophrenia.
        Bull Psychonomic Soc. 1987; 25: 464-467
        • McCarley R.W.
        • Niznikiewicz M.A.
        • Salisbury D.F.
        • Nestor P.G.
        • O’Donnell B.F.
        • Hirayasu Y.
        • et al.
        Cognitive dysfunction in schizophrenia.
        Eur Arch Psychiatry Clin Neurosci. 1999; 249: 69-82
        • McDonald C.
        • Bullmore E.T.
        • Sham P.C.
        • Chitnis X.
        • Wickham H.
        • Bramon E.
        • et al.
        Association of genetic risks for schizophrenia and bipolar disorder with specific and generic brain structural endophenotypes.
        Arch Gen Psychiatry. 2004; 61: 974-984
        • Menon V.
        • Anagnoson R.T.
        • Glover G.H.
        • Pfefferbaum A.
        Functional magnetic resonance imaging evidence for disrupted basal ganglia function in schizophrenia.
        Am J Psychiatry. 2001; 158: 646-649
        • Oldfield R.C.
        The assessment and analysis of handedness.
        Neuropsychologia. 1971; 9: 97-113
        • Peters E.R.
        • Pickering A.D.
        • Hemsley D.R.
        “Cognitive inhibition” and positive symptomatology in schizotypy.
        Br J Clin Psychol. 1994; 33: 33-48
        • Peters E.R.
        • Pickering A.D.
        • Kent A.
        • Glasper A.
        • Irani M.
        • David A.S.
        • et al.
        The relationship between cognitive inhibition and psychotic symptoms.
        J Abnorm Psychol. 2000; 109: 386-395
        • Raemaekers M.
        • Jansma J.M.
        • Cahn W.
        • van der Geest J.N.
        • van der Linden J.A.
        • Kahn R.S.
        • et al.
        Neuronal substrate of the saccadic inhibition deficit in schizophrenia investigated with 3-dimensional event-related functional magnetic resonance imaging.
        Arch Gen Psychiatry. 2002; 59: 313-320
        • Ramsey N.F.
        • van den Brink J.S.
        • van Muiswinkel A.M.
        • Folkers P.J.
        • Moonen C.T.
        • Jansma J.M.
        • et al.
        Phase navigator correction in 3D fMRI improves detection of brain activation.
        Neuroimage. 1998; 8: 240-248
        • Sheehan D.V.
        • Lecrubier Y.
        • Sheehan K.H.
        • Amorim P.
        • Janavs J.
        • Weiller E.
        • et al.
        The Mini-International Neuropsychiatric Interview (M.I.N.I.).
        J Clin Psychiatry. 1998; 59: 22-33
        • Swerdlow N.R.
        • Braff D.L.
        • Geyer M.A.
        Animal models of deficient sensorimotor gating.
        Behav Pharmacol. 2000; 11: 185-204
        • Swerdlow N.R.
        • Braff D.L.
        • Hartston H.
        • Perry W.
        • Geyer M.A.
        Latent inhibition in schizophrenia.
        Schizophr Res. 1996; 20: 91-103
        • Takase K.
        • Tamagaki C.
        • Okugawa G.
        • Nobuhara K.
        • Minami T.
        • Sugimoto T.
        • et al.
        Reduced white matter volume of the caudate nucleus in patients with schizophrenia.
        Neuropsychobiology. 2004; 50: 296-300
        • Tekin S.
        • Cummings J.L.
        Frontal-subcortical neuronal circuits and clinical neuropsychiatry.
        J Psychosom Res. 2002; 53: 647-654
        • Thevenaz P.
        • Ruttimann U.E.
        • Unser M.
        A pyramid approach to subpixel registration based on intensity.
        IEEE Trans Image Processing. 1998; 7: 27-41
        • Vink M.
        • Kahn R.S.
        • Raemaekers M.
        • Ramsey N.F.
        Perceptual bias following visual target selection.
        Neuroimage. 2005; 25: 1168-1174
        • Vink M.
        • Kahn R.S.
        • Raemaekers M.
        • van den H.M.
        • Boersma M.
        • Ramsey N.F.
        Function of striatum beyond inhibition and execution of motor responses.
        Hum Brain Mapp. 2005; 25: 336-344
        • Vink M.
        • Ramsey N.F.
        • Raemaekers M.
        • Kahn R.S.
        Negative priming in schizophrenia revisited.
        Schizophr Res. 2005; 79: 211-216
        • Waters F.A.
        • Badcock J.C.
        • Maybery M.T.
        • Michie P.T.
        Inhibition in schizophrenia.
        Schizophr Res. 2003; 62: 275-280
        • Weisbrod M.
        • Kiefer M.
        • Marzinzik F.
        • Spitzer M.
        Executive control is disturbed in schizophrenia.
        Biol Psychiatry. 2000; 47: 51-60
        • Worsley K.J.
        Local maxima and the expected Euler characteristic of excursion sets of chi-square, F and t fields.
        Adv Appl Probability. 1994; 26: 13-42