Advertisement

Nitrous Oxide and Xenon Prevent Amphetamine-Induced Carrier-Mediated Dopamine Release in a Memantine-Like Fashion and Protect Against Behavioral Sensitization

      Background

      Amphetamine administration induces stimulation-independent dopamine release in the nucleus accumbens (NAcc) through reverse dopamine transport, a critical neurochemical event involved in its psychostimulant action, and furthermore decreases stimulation-dependent vesicular dopamine release. These effects may involve possible indirect glutamatergic mechanisms.

      Methods

      We investigated the effects of nitrous oxide and xenon, which possess antagonistic action at the N-methyl-D-aspartate (NMDA) receptor, on brain slices ex vivo on amphetamine-induced changes in carrier-mediated and KCl-evoked dopamine release in the NAcc, and in vivo on amphetamine-induced locomotor sensitization.

      Results

      Like the low-affinity NMDA receptor antagonist memantine, but not the prototypical compound MK-801, nitrous oxide and xenon at appropriate concentrations blocked both the increase in carrier-mediated dopamine release and locomotor sensitization produced by amphetamine.

      Conclusions

      In contrast to what has generally been found using prototypical NMDA receptor antagonists, these data regarding the effect of memantine, nitrous oxide, and xenon support the hypothesis that activation of certain NMDA receptors (possibly those containing the NR1a/NR2D subunit) in the NAcc is involved in the amphetamine-induced increase in carrier-mediated dopamine release and the development of behavioral sensitization to amphetamine. Nitrous oxide, xenon, and memantine may be of therapeutic interest for treating drug dependence.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abraini J.H.
        • Lemaire M.
        • David H.N.
        Potentially neuroprotective and therapeutic properties of nitrous oxide and xenon.
        Ann NY Acad Sci. 2005; 1053: 289-300
        • Alho H.
        • Methuen T.
        • Paloheimo M.
        • Seppa K.
        • Strid N.
        • Apter-Kaseva N.
        • et al.
        Nitrous oxide has no effect in the treatment of alcohol withdrawal syndrome.
        J Clin Psychopharmacol. 2003; 23: 211-214
        • Badiani A.
        • Camp D.M.
        • Robinson T.E.
        Enduring enhancement of amphetamine sensitization by drug-associated environmental stimuli.
        J Pharmacol Exp Ther. 1997; 282: 787-794
        • Bisaga A.
        • Comer S.D.
        • Ward A.S.
        • Popik P.
        • Kleber H.D.
        • Fischman M.W.
        The NMDA antagonist memantine attenuates the expression of opioid physical dependence in humans.
        Psychopharmacology (Berl). 2001; 157: 1-10
        • Brazell M.P.
        • Kasser R.J.
        • Renner K.J.
        • Feng J.
        • Moghaddam B.
        • Adams R.N.
        Electrocoating carbon fiber microelectrodes with nafion improves selectivity for electroactive neurotransmitters.
        J Neurosci Methods. 1987; 22: 167-172
        • Bresink I.
        • Benke T.A.
        • Collett V.J.
        • Seal A.J.
        • Parsons C.G.
        • Henley J.M.
        • Collingridge G.L.
        Effects of memantine on recombinant rat NMDA receptors expressed in HEK 293 cells.
        Br J Pharmacol. 1996; 119: 195-204
        • Burnette W.B.
        • Bailey M.D.
        • Kukoyi S.
        • Blakely R.D.
        • Trowbridge C.G.
        • Justice Jr, J.B.
        Human norepinephrine transporter kinetics using rotating disk electrode voltammetry.
        Anal Chem. 1996; 68: 2932-2938
        • Crespi F.
        • Martin K.F.
        • Marsden C.A.
        Simultaneous in vivo voltammetric measurement of striatal extracellular DOPAC and 5-HIAA levels.
        Neurosci Lett. 1988; 90: 285-291
        • David H.N.
        • Léveillé F.
        • Chazalviel L.
        • MacKenzie E.T.
        • Buisson A.
        • Lemaire M.
        • Abraini J.H.
        Reduction of ischemic brain damage by nitrous oxide and xenon.
        J Cereb Blood Flow Metab. 2003; 23: 1168-1173
        • David H.N.
        • Sissoui K.
        • Abraini J.H.
        Modulation of the locomotor responses induced by D1-like and D2-like dopamine receptor agonists and D-amphetamine by NMDA and non-NMDA glutamate receptor agonists and antagonists in the core of the rat nucleus accumbens.
        Neuropharmacology. 2004; 46: 179-191
        • Daynes G.
        • Gillman M.A.
        Psychotropic analgesic nitrous oxide prevents craving after withdrawal for alcohol, cannabis and tobacco.
        Int J Neurosci. 1994; 76: 13-16
        • Eger II, E.I.
        • Saidman L.J.
        • Brandstater B.
        Minimum alveolar anesthetic concentration.
        Anesthesiology. 1965; 26: 756-763
        • Essman W.D.
        • McGonigle P.
        • Lucki I.
        Anatomical differentiation within the nucleus accumbens of the locomotor stimulatory actions of selective dopamine agonists and d-amphetamine.
        Psychopharmacology (Berl). 1993; 112: 233-241
        • Everitt B.
        • Wolf M.E.
        Psychomotor stimulant addiction.
        J Neurosci. 2002; 22: 3312-3320
        • Fischer J.F.
        • Cho A.K.
        Chemical release of dopamine from striatal homogenates.
        J Pharmacol Exp Ther. 1979; 208: 203-209
        • Floor E.
        • Leventhal P.S.
        • Wang Y.
        • Meng L.
        • Chen W.
        Dynamic storage of dopamine in rat brain synaptic vesicles in vitro.
        J Neurochem. 1995; 64: 689-699
        • Floor E.
        • Meng L.
        Amphetamine releases dopamine from synaptic vesicles by dual mechanisms.
        Neurosci Lett. 1996; 215: 53-56
        • Franks N.P.
        • Dickinson R.
        • de Sousa S.L.M.
        • Hall A.C.
        • Lieb W.R.
        How does xenon produce anesthesia?.
        Nature. 1998; 396: 324
        • Gillman M.A.
        • Lichtigfeld F.J.
        Correct use of analgesic nitrous oxide for the alcohol withdrawal state is essential.
        J Clin Psychopharmacol. 2004; 24: 238-239
        • Goto T.
        • Suwa K.
        • Uezono S.
        • Ichinose F.
        • Uchiyama M.
        • Morita S.
        The blood–gas partition coefficient of xenon may be lower than generally accepted.
        Br J Anaesth. 1998; 80: 255-256
        • Green A.L.
        • el Hait M.A.
        Inhibition of mouse brain monoamine oxidase by (+)-amphetamine in vivo.
        J Pharm Pharmacol. 1978; 30: 262-263
        • Heikkila R.E.
        • Orlansky H.
        • Mytilineou C.
        • Cohen G.
        Amphetamine.
        J Pharmacol Exp Ther. 1975; 194: 47-56
        • Homi H.M.
        • Yokoo N.
        • Ma D.
        • Warner D.S.
        • Franks N.P.
        • Maze M.
        • Grocott H.P.
        The neuroprotective effect of xenon administration during transient middle cerebral artery occlusion in mice.
        Anesthesiology. 2003; 99: 876-881
        • Hyman S.E.
        Addiction to cocaine and amphetamine.
        Neuron. 1996; 16: 901-904
        • Ikeda K.
        • Araki K.
        • Takayama C.
        • Inoue Y.
        • Yagi T.
        • Aizawa S.
        • Mishina M.
        Reduced spontaneous activity of mice defective in the □ 4 subunit of the NMDA receptor channel.
        Mol Brain Res. 1995; 33: 61-71
        • Jevtovic-Todorovic V.
        • Todorovic S.M.
        • Mennerick S.
        • Powell S.
        • Dikranian K.
        • Benshoff N.
        • et al.
        Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin.
        Nature Med. 1998; 4: 460-463
        • Jones S.R.
        • Gainetdinov R.R.
        • Wightman R.M.
        • Caron M.G.
        Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter.
        J Neurosci. 1998; 18: 1979-1986
        • Jones S.R.
        • Joseph J.D.
        • Barak L.S.
        • Caron M.G.
        • Wightman R.M.
        Dopamine neuronal transport kinetics and effects of amphetamine.
        J Neurochem. 1999; 73: 2406-2414
        • Kim J.H.
        • Perugini M.
        • Austin J.D.
        • Vezina P.
        Previous exposure to amphetamine enhances the subsequent locomotor response to a D1 dopamine receptor agonist when glutamate reuptake is inhibited.
        J Neurosci. 2001; 21: RC133
        • Koob G.F.
        • Bloom F.E.
        Cellular and molecular mechanisms of drug dependence.
        Science. 1988; 242: 715-723
        • Krasowski M.D.
        • Harrison N.L.
        General anaesthetic actions on ligand-gated ion channels.
        Cell Mol Life Sci. 1999; 55: 1278-1303
        • Kuhr W.G.
        • Ewing A.G.
        • Near J.A.
        • Wightman R.M.
        Amphetamine attenuates the stimulated release of dopamine in vivo.
        J Pharmacol Exp Ther. 1985; 232: 388-394
        • Laurie D.J.
        • Seeburg P.H.
        Ligand affinities at recombinant N-methyl-D-aspartate receptors depend on subunit composition.
        Eur J Pharmacol. 1994; 268: 335-345
        • Liang N.Y.
        • Rutledge C.O.
        Comparison of the release of [3H]dopamine from isolated corpus striatum by amphetamine, fenfluramine and unlabelled dopamine.
        Biochem Pharmacol. 1982; 31: 983-992
        • Liang N.Y.
        • Rutledge C.O.
        Evidence for carrier-mediated efflux of dopamine from corpus striatum.
        Biochem Pharmacol. 1982; 31: 2479-2484
        • Mack F.
        • Bonisch H.
        Dissociation constants and lipophilicity of catecholamines and related compounds.
        Naunyn Schmiedebergs Arch Pharmacol. 1979; 310: 1-9
        • Magendzo K.
        • Bustos G.
        Expression of amphetamine-induced behavioral sensitization after short- and long-term withdrawal periods.
        Neuropsychopharmacology. 2003; 28: 468-477
        • Miller D.W.
        • Abercrombie E.D.
        Effects of MK-801 on spontaneous and amphetamine-stimulated dopamine release in striatum measured with in vivo microdialysis in awake rats.
        Brain Res Bull. 1996; 40: 57-62
        • Miller H.H.
        • Shore P.A.
        • Clarke D.E.
        In vivo monoamine oxidase inhibition by D-amphetamine.
        Biochem Pharmacol. 1980; 29: 1347-1354
        • Miyamoto Y.
        • Yamada K.
        • Noda Y.
        • Mori H.
        • Mishina M.
        • Nabeshima T.
        Lower sensitivity to stress and altered monoaminergic neuronal function in mice lacking the NMDA receptor α4 subunit.
        J Neurosci. 2002; 22: 2335-2342
        • Montaron M.F.
        • Deniau J.M.
        • Menetrey A.
        • Glowinski J.
        • Thierry A.M.
        Prefrontal cortex inputs of the nucleus accumbens-nigro-thalamic circuit.
        Neuroscience. 1996; 71: 371-382
        • Monyer H.
        • Burnashev N.
        • Laurie D.J.
        • Sakmann B.
        • Seeburg P.H.
        Developmental and regional expression in the rat brain and functional properties of four NMDA receptors.
        Neuron. 1994; 12: 529-540
        • Morari M.
        • Marti M.
        • Sbrenna S.
        • Fuxe K.
        • Bianchi C.
        • Beani L.
        Reciprocal dopamine-glutamate modulation of release in the basal ganglia.
        Neurochem Int. 1998; 33: 383-397
        • Nankai M.
        • Fage D.
        • Carter C.
        Striatal NMDA-aspartate receptor subtypes.
        Eur J Pharmacol. 1995; 286: 61-70
        • Olney J.W.
        • Labruyere J.
        • Price M.T.
        Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs.
        Science. 1989; 244: 1360-1362
        • Olney J.W.
        • Labruyere J.
        • Wang G.
        • Wozniak D.F.
        • Price M.T.
        • Sesma M.A.
        NMDA antagonist neurotoxicity mechanism and prevention.
        Science. 1991; 254: 1515-1518
        • Palmer G.C.
        • Widzowski D.
        Low affinity use-dependent NMDA receptor antagonists show promise for clinical development.
        Amino Acids. 2000; 19: 151-155
        • Parker E.M.
        • Cubeddu L.X.
        Comparative effects of amphetamine, phenylethylamine and related drugs on dopamine efflux, dopamine uptake and mazindol binding.
        J Pharmacol Exp Ther. 1988; 245: 199-210
        • Parsons C.G.
        • Danysz W.
        • Quack G.
        Glutamate in CNS disorders as a target for drug development.
        Drug News Perspect. 1998; 11: 523-569
        • Parsons C.G.
        • Danysz W.
        • Quack G.
        Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist—a review of preclinical data.
        Neuropharmacology. 1999; 38: 735-767
        • Patel J.
        • Mooslehner K.A.
        • Chan P.M.
        • Emson P.C.
        • Stamford J.A.
        Presynaptic control of striatal dopamine neurotransmission in adult vesicular monoamine transporter 2 (VMAT2) mutant mice.
        J Neurochem. 2003; 85: 898-910
        • Porter R.H.
        • Greenamyre J.T.
        Regional variations in the pharmacology of NMDA receptor channel blockers.
        J Neurochem. 1995; 64: 614-623
        • Pulvirenti L.
        • Koob G.F.
        Being partial to psychostimulant addiction therapy.
        Trends Pharmacol Sci. 2002; 23: 151-153
        • Raiteri M.
        • Cerrito F.
        • Cervoni A.M.
        • Levi G.
        Dopamine can be released by two mechanisms differentially affected by the dopamine transport inhibitor nomifensine.
        J Pharmacol Exp Ther. 1979; 208: 195-202
        • Rogawski M.A.
        Therapeutic potential of excitatory amino acid antagonists.
        Trends Pharmacol Sci. 1993; 14: 325-331
        • Schmitz Y.
        • Lee C.J.
        • Schmauss C.
        • Gonon F.
        • Sulzer D.
        Amphetamine distorts stimulation-dependent dopamine overflow.
        J Neurosci. 2001; 21: 5916-5924
        • Seiden L.S.
        • Sabol K.E.
        • Ricaurte G.A.
        Amphetamine.
        Annu Rev Pharmacol Toxicol. 1993; 33: 639-677
        • Self D.W.
        • Nestler E.J.
        Molecular mechanisms of drug reinforcement and addiction.
        Annu Rev Neurosci. 1995; 18: 463-495
        • Standaert D.G.
        • Landwehrmeyer G.B.
        • Kerner J.A.
        • Penney Jr, J.B.
        • Young A.B.
        Expression of NMDAR2D glutamate receptor subunit mRNA in neurochemically identified interneurons in the rat neostriatum, neocortex and hippocampus.
        Mol Brain Res. 1996; 42: 89-102
        • Sulzer D.
        • Maidment N.T.
        • Rayport S.
        Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons.
        J Neurochem. 1993; 60: 527-535
        • Sulzer D.
        • Chen T.K.
        • Lau Y.Y.
        • Kristensen H.
        • Rayport S.
        • Ewing A.
        Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport.
        J Neurosci. 1995; 15: 4102-4108
        • Sulzer D.
        • Rayport S.
        Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules.
        Neuron. 1990; 5: 797-808
        • Vezina P.
        • Queen A.L.
        Induction of locomotor sensitization by amphetamine requires the activation of NMDA receptors in the rat ventral tegmental area.
        Psychopharmacology. 2000; 151: 184-191
        • West A.R.
        • Floresco S.B.
        • Charara A.
        • Rosenkranz J.A.
        • Grace A.A.
        Electrophysiological interactions between striatal glutamatergic and dopaminergic systems.
        Ann N Y Acad Sci. 2003; 1003: 53-74
        • Wieczorek W.J.
        • Kruk Z.L.
        Differential action of (+)-amphetamine on electrically evoked dopamine overflow in rat brain slices containing corpus striatum and nucleus accumbens.
        Br J Pharmacol. 1994; 111: 829-836
        • Wilhelm S.
        • Ma D.
        • Maze M.
        • Franks N.P.
        Effects of xenon on in vitro and in vivo models of neuronal injury.
        Anesthesiology. 2002; 96: 1485-1491
        • Williams K.
        Pharmacological properties of recombinant N-methyl-D-aspartate (NMDA) receptors containing the epsilon 4 (NR2D) subunit.
        Neurosci Lett. 1995; 184: 181-184
        • Wise R.A.
        Addictive drugs and brain stimulation reward.
        Annu Rev Neurosci. 1996; 19: 319-340
        • Wolf M.E.
        • White F.J.
        • Hu X.T.
        MK-801 prevents alterations in the mesoaccumbens dopamine system associated with behavioral sensitization to amphetamine.
        J Neurosci. 1994; 14: 1735-1745
        • Yamakura T.
        • Harris R.A.
        Effects of gaseous anesthetics nitrous oxide and xenon on ligand-gated ion channels. Comparison with isoflurane and ethanol.
        Anesthesiology. 2000; 93: 1095-1101
        • Zaczek R.
        • Culp S.
        • De Souza E.B.
        Interactions of [3H]amphetamine with rat brain synaptosomes. II. Active transport.
        J Pharmacol Exp Ther. 1991; 257: 830-835
        • Zaczek R.
        • Culp S.
        • Goldberg H.
        • Mccann D.J.
        • De Souza E.B.
        Interactions of [3H]amphetamine with rat brain synaptosomes. I. Saturable sequestration.
        J Pharmacol Exp Ther. 1991; 257: 820-829