Advertisement

Opposing Influence of Basolateral Amygdala and Footshock Stimulation on Neurons of the Central Amygdala

Published:December 22, 2005DOI:https://doi.org/10.1016/j.biopsych.2005.09.013

      Background

      The basolateral complex (BLA) and the central nucleus of the amygdala (CeA) are believed to mediate the expression of affective responses. After affective learning, conditioned stimulus–related information is thought to be conveyed from the BLA to the CeA; the medial CeA (Cem), in turn, projects to hypothalamic and brainstem structures involved with induction of affective responses. Although the conditioned stimulus and unconditioned stimulus both evoke affective responses, the precise response often differs. It is unknown whether this difference is represented by distinct activity patterns of single Cem neurons. Furthermore, the nature of the interaction between the BLA and Cem is unknown.

      Methods

      Using in vivo extracellular and intracellular recordings, we examined how the BLA affects the Cem and compared this with effects induced by footshock (unconditioned stimulus) in the same neurons.

      Results

      Our results demonstrate that, contrary to conventional views, BLA stimulation primarily inhibits Cem neurons by a polysynaptic circuit, and show that single Cem neurons respond to both BLA input and footshock in an opposite manner.

      Conclusions

      These results demonstrate the predominantly inhibitory nature of the BLA–Cem interaction. These data further demonstrate the distinct cellular events that might lead to differential modulation of conditioned and unconditioned affective responses.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abrahamson E.E.
        • Moore R.Y.
        The posterior hypothalamic area.
        Brain Res. 2001; 889: 1-22
        • al Maskati H.A.
        • Zbrozyna A.W.
        Cardiovascular and motor components of the defense reaction elicited in rats by electrical and chemical stimulation in amygdala.
        J Auton Nerv Syst. 1989; 28: 127-131
        • Ben-Ari Y.
        • Le Gal la Salle G.
        Plasticity at unitary level. II. Modifications during sensory-sensory association procedures.
        Electroencephalogr Clin Neurophysiol. 1972; 32: 667-679
        • Bailey T.W.
        • Dimicco J.A.
        Chemical stimulation of the dorsomedial hypothalamus elevates plasma ACTH in conscious rats.
        Am J Physiol Regul Integr Comp Physiol. 2001; 280: R8-R15
        • Batten T.F.
        • Gamboa-Esteves F.O.
        • Saha S.
        Evidence for peptide co-transmission in retrograde- and anterograde-labelled central nucleus of amygdala neurones projecting to NTS.
        Auton Neurosci. 2002; 98: 28-32
        • Beck C.H.
        • Fibiger H.C.
        Conditioned fear-induced changes in behavior and in the expression of the immediate early gene c-fos.
        J Neurosci. 1995; 15: 709-720
        • Bernard J.F.
        • Huang G.F.
        • Besson J.M.
        Effect of noxious somesthetic stimulation on the activity of neurons of the nucleus centralis of the amygdala.
        Brain Res. 1990; 523: 347-350
        • Campeau S.
        • Davis M.
        Involvement of the central nucleus and basolateral complex of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli.
        J Neurosci. 1995; 15: 2301-2311
        • Campeau S.
        • Falls W.A.
        • Cullinan W.E.
        • Helmreich D.L.
        • Davis M.
        • Watson S.J.
        Elicitation and reduction of fear.
        Neuroscience. 1997; 78: 1087-1104
        • Cassell M.D.
        • Freedman L.J.
        • Shi C.
        The intrinsic organization of the central extended amygdala.
        Ann N Y Acad Sci 29. 1999; 877: 217-241
        • Cassell M.D.
        • Gray T.S.
        Morphology of peptide-immunoreactive neurons in the rat central nucleus of the amygdala.
        J Comp Neurol. 1989; 8: 320-333
        • Cassell M.D.
        • Gray T.S.
        • Kiss J.Z.
        Neuronal architecture in the rat central nucleus of the amygdala.
        J Comp Neurol. 1986; 22: 478-499
        • Cechetto D.F.
        • Calaresu F.R.
        Units in the amygdala responding to activation of carotid baro- and chemoreceptors.
        Am J Physiol. 1984; 246: R832-R836
        • Chen Q.H.
        • Haywood J.R.
        • Toney G.M.
        Sympathoexcitation by PVN-injected bicuculline requires activation of excitatory amino acid receptors.
        Hypertension. 2003; 42: 725-731
        • Collins D.R.
        • Pare D.
        Spontaneous and evoked activity of intercalated amygdala neurons.
        Eur J Neurosci. 1999; 11: 3441-3448
        • Collins D.R.
        • Pare D.
        Reciprocal changes in the firing probability of lateral and central medial amygdala neurons.
        J Neurosci. 1999; 19: 836-844
        • Davis M.
        The role of the amygdala in conditioned and unconditioned fear and anxiety.
        in: Aggleton J.P. The Amygdala A Functional Analysis. Oxford University Press, New York2000: 213-287
        • Danielsen E.H.
        • Magnuson D.J.
        • Gray T.S.
        The central amygdaloid nucleus innervation of the dorsal vagal complex in rat.
        Brain Res Bull. 1989; 22: 705-715
        • Dielenberg R.A.
        • Carrive P.
        • McGregor I.S.
        The cardiovascular and behavioral response to cat odor in rats.
        Brain Res. 2001; 897: 228-237
        • Garrett K.M.
        • Gan J.
        Enhancement of gamma-aminobutyric acidA receptor activity by alpha-chloralose.
        J Pharmacol Exp Ther. 1998; 285: 680-686
        • Gelsema A.J.
        • Agarwal S.K.
        • Calaresu F.R.
        Cardiovascular responses and changes in neural activity in the rostral ventrolateral medulla elicited by electrical stimulation of the amygdala of the rat.
        J Auton Nerv Syst. 1989; 27: 91-100
        • Gold M.R.
        • Cohen D.H.
        Modification of the discharge of vagal cardiac neurons during learned heart rate change.
        Science. 1981; 214: 345-347
        • Goosens K.A.
        • Maren S.
        Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats.
        Learn Mem. 2001; 8: 148-155
        • Gray T.S.
        • Carney M.E.
        • Magnuson D.J.
        Direct projections from the central amygdaloid nucleus to the hypothalamic paraventricular nucleus.
        Neuroendocrinology. 1989; 50: 433-446
        • Hall J.
        • Thomas K.L.
        • Everitt B.J.
        Fear memory retrieval induces CREB phosphorylation and Fos expression within the amygdala.
        Eur J Neurosci. 2001; 13: 1453-1458
        • Hatfield T.
        • Han J.S.
        • Conley M.
        • Gallagher M.
        • Holland P.
        Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects.
        J Neurosci. 1996; 16: 5256-5265
        • Henke P.G.
        Electrophysiological activity in the central nucleus of the amygdala—emotionality and stress-ulcers in rats.
        Behav Neurosci. 1988; 102: 77-83
        • Hernandez L.L.
        • Powell D.A.
        • Gibbs C.M.
        Amygdaloid central nucleus neuronal activity accompanying pavlovian cardiac conditioning.
        Behav Brain Res. 1990; 41: 71-79
        • Hitchcock J.M.
        • Davis M.
        Efferent pathway of the amygdala involved in conditioned fear as measured with the fear-potentiated startle paradigm.
        Behav Neurosci. 1991; 105: 826-842
        • Hunt P.S.
        • Richardson R.
        • Hess M.F.
        • Campbell B.A.
        Emergence of conditioned cardiac responses to an olfactory CS paired with an acoustic startle UCS during development.
        Dev Psychobiol. 1997; 30: 151-163
        • Iwata J.
        • Chida K.
        • LeDoux J.E.
        Cardiovascular responses elicited by stimulation of neurons in the central amygdaloid nucleus in awake but not anesthetized rats resemble conditioned emotional responses.
        Brain Res. 1987; 418: 183-188
        • Iwata J.
        • LeDoux J.E.
        Dissociation of associative and nonassociative concomitants of classical fear conditioning in the freely behaving rat.
        Behav Neurosci. 1988; 102: 66-76
        • Jhamandas J.H.
        • Petrov T.
        • Harris K.H.
        • Vu T.
        • Krukoff T.L.
        Parabrachial nucleus projection to the amygdala in the rat.
        Brain Res Bull. 1996; 39: 115-126
        • Kapp B.S.
        • Gallagher M.
        • Underwood M.D.
        • McNall C.L.
        • Whitehorn D.
        Cardiovascular responses elicited by electrical stimulation of the amygdala central nucleus in the rabbit.
        Brain Res. 1982; 234: 251-262
        • Keim S.R.
        • Shekhar A.
        The effects of GABAA receptor blockade in the dorsomedial hypothalamic nucleus on corticotrophin (ACTH) and corticosterone secretion in male rats.
        Brain Res. 1996; 739: 46-51
        • Kenney M.J.
        • Weiss M.L.
        • Haywood J.R.
        The paraventricular nucleus.
        Acta Physiol Scand. 2003; 177: 7-15
        • Killcross S.
        • Robbins T.W.
        • Everitt B.J.
        Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala.
        Nature. 1997; 388: 377-380
        • Koch M.
        • Ebert U.
        Enhancement of the acoustic startle response by stimulation of an excitatory pathway from the central amygdala/basal nucleus of Meynert to the pontine reticular formation.
        Exp Brain Res. 1993; 93: 231-241
        • Lewis B.L.
        • O’Donnell P.
        Ventral tegmental area afferents to the prefrontal cortex maintain membrane potential ‘up’ states in pyramidal neurons via D(1) dopamine receptors.
        Cereb Cortex. 2000; 10: 1168-1175
        • Lovinger D.M.
        • Zimmerman S.A.
        • Levitin M.
        • Jones M.V.
        • Harrison N.L.
        Trichloroethanol potentiates synaptic transmission mediated by gamma-aminobutyric acidA receptors in hippocampal neurons.
        J Pharmacol Exp Ther. 1993; 264: 1097-1103
        • Luiten P.G.
        • Ono T.
        • Nishijo H.
        • Fukuda M.
        Differential input from the amygdaloid body to the ventromedial hypothalamic nucleus in the rat.
        Neurosci Lett. 1983; 35: 253-258
        • Marchand A.R.
        Integration of cardiac responses to serial stimuli after Pavlovian conditioning in rats.
        Anim Learn Behav. 2002; 30: 132-142
        • Martin D.S.
        • Haywood J.R.
        Hemodynamic responses to paraventricular nucleus disinhibition with bicuculline in conscious rats.
        Am J Physiol. 1993; 265: H1727-H1733
        • Martin D.S.
        • Rodrigo M.C.
        • Egland M.C.
        • Barnes L.U.
        Disinhibition of the hypothalamic paraventricular nucleus increases mean circulatory filling pressure in conscious rats.
        Brain Res. 1997; 756: 106-113
        • Martina M.
        • Royer S.
        • Pare D.
        Physiological properties of central medial and central lateral amygdala neurons.
        J Neurophysiol. 1999; 82: 1843-1854
        • McDonald A.J.
        Glutamate and aspartate immunoreactive neurons of the rat basolateral amygdala.
        J Comp Neurol. 1996; 365: 367-379
        • McEchron M.D.
        • McCabe P.M.
        • Green E.J.
        • Llabre M.M.
        • Schneiderman N.
        Simultaneous single unit recording in the medial nucleus of the medial geniculate nucleus and amygdaloid central nucleus throughout habituation, acquisition, and extinction of the rabbit’s classically conditioned heart rate.
        Brain Res. 1995; 682: 157-166
        • Millhouse O.E.
        The intercalated cells of the amygdala.
        J Comp Neurol 8. 1986; 247: 246-271
        • Nader K.
        • Majidishad P.
        • Amorapanth P.
        • LeDoux J.E.
        Damage to the lateral and central, but not other, amygdaloid nuclei prevents the acquisition of auditory fear conditioning.
        Learn Mem. 2001; 8: 156-163
        • Nose I.
        • Higashi H.
        • Inokuchi H.
        • Nishi S.
        Synaptic responses of guinea-pig and rat central amygdala neurons in vitro.
        J Neurophysiol. 1991; 65: 1227-1241
        • O’Donnell P.
        • Grace A.A.
        Synaptic interactions among excitatory afferents to nucleus accumbens neurons.
        J Neurosci. 1995; 15: 3622-3639
        • Ono T.
        • Nishijo H.
        • Uwano T.
        Amygdala role in conditioned associative learning.
        Prog Neurobiol. 1995; 46: 401-422
        • Pare D.
        • Collins D.R.
        Neuronal correlates of fear in the lateral amygdala.
        J Neurosci. 2000; 20: 2701-2710
        • Pare D.
        • Smith Y.
        • Pare J.F.
        Intra-amygdaloid projections of the basolateral and basomedial nuclei in the cat.
        Neuroscience. 1995; 69: 567-583
        • Parkinson J.A.
        • Robbins T.W.
        • Everitt B.J.
        Dissociable roles of the central and basolateral amygdala in appetitive emotional learning.
        Eur J Neurosci. 2000; 12: 405-413
        • Pascoe J.P.
        • Kapp B.S.
        Electrophysiological characteristics of amygdaloid central nucleus neurons during Pavlovian fear conditioning in the rabbit.
        Behav Brain Res. 1985; 16: 117-133
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotaxic Coordinates. Academic Press, New York1997
        • Peoples R.W.
        • Weight F.F.
        Trichloroethanol potentiation of gamma-aminobutyric acid-activated chloride current in mouse hippocampal neurones.
        Br J Pharmacol. 1994; 113: 555-563
        • Petrovich G.D.
        • Canteras N.S.
        • Swanson L.W.
        Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems.
        Brain Res Brain Res Rev. 2001; 38: 247-289
        • Pickel V.M.
        • van Bockstaele E.J.
        • Chan J.
        • Cestari D.M.
        Amygdala efferents form inhibitory-type synapses with a subpopulation of catecholaminergic neurons in the rat Nucleus tractus solitarius.
        J Comp Neurol. 1995; 362: 510-523
        • Pitkanen A.
        • Stefanacci L.
        • Farb C.R.
        • Go G.G.
        • LeDoux J.E.
        • Amaral D.G.
        Intrinsic connections of the rat amygdaloid complex.
        J Comp Neurol. 1995; 356: 288-310
        • Pitkanen A.
        • Savander V.
        • LeDoux J.E.
        Organization of intra-amygdaloid circuitries in the rat.
        Trends Neurosci. 1997; 20: 517-523
        • Powell D.A.
        • McLaughlin J.
        • Churchwell J.
        • Elgarico T.
        • Parker A.
        Heart rate changes accompanying jaw movement Pavlovian conditioning in rabbits.
        Integr Physiol Behav Sci. 2002; 37: 215-227
        • Quirk G.J.
        • Likhtik E.
        • Pelletier J.G.
        • Pare D.
        Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons.
        J Neurosci. 2003; 23: 8800-8807
        • Radulovic J.
        • Kammermeier J.
        • Spiess J.
        Relationship between fos production and classical fear conditioning.
        J Neurosci. 1998; 18: 7452-7461
        • Richardson R.
        • Wang P.
        • Campbell B.A.
        Delayed development of conditioned heart rate responses to auditory stimuli in the rat.
        Dev Psychobiol. 1995; 28: 221-238
        • Rizvi T.A.
        • Ennis M.
        • Behbehani M.M.
        • Shipley M.T.
        Connections between the central nucleus of the amygdala and the midbrain periaqueductal gray.
        J Comp Neurol. 1991; 303: 121-131
        • Rogan M.T.
        • Staubli U.V.
        • LeDoux J.E.
        Fear conditioning induces associative long-term potentiation in the amygdala.
        Nature. 1997; 390: 604-607
        • Roozendaal B.
        • Koolhaas J.M.
        • Bohus B.
        Attenuated cardiovascular, neuroendocrine, and behavioral responses after a single footshock in central amygdaloid lesioned male rats.
        Physiol Behav. 1991; 50: 771-775
        • Rosen J.B.
        • Davis M.
        Enhancement of electrically elicited startle by amygdaloid stimulation.
        Physiol Behav. 1990; 48: 343-349
        • Rosen J.B.
        • Hitchcock J.M.
        • Sananes C.B.
        • Miserendino M.J.
        • Davis M.
        A direct projection from the central nucleus of the amygdala to the acoustic startle pathway.
        Behav Neurosci. 1991; 105: 817-825
        • Rosenkranz J.A.
        • Grace A.A.
        Dopamine attenuates prefrontal cortical suppression of sensory inputs to the basolateral amygdala of rats.
        J Neurosci. 2001; 21: 4090-4103
        • Rosenkranz J.A.
        • Grace A.A.
        Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo.
        J Neurosci. 2002; 22: 324-337
        • Rosenkranz J.A.
        • Grace A.A.
        Dopamine-mediated modulation of odour-evoked amygdala potentials during pavlovian conditioning.
        Nature 16. 2002; 417: 282-287
        • Royer S.
        • Martina M.
        • Pare D.
        An inhibitory interface gates impulse traffic between the input and output stations of the amygdala.
        J Neurosci. 1999; 19: 10575-10583
        • Saha S.
        • Batten T.F.
        • Henderson Z.
        A GABAergic projection from the central nucleus of the amygdala to the nucleus of the solitary tract.
        Neuroscience. 2000; 99: 613-626
        • Saha S.
        • Henderson Z.
        • Batten T.F.
        Somatostatin immunoreactivity in axon terminals in rat nucleus tractus solitarii arising from central nucleus of amygdala.
        J Chem Neuroanat. 2002; 24: 1-13
        • Sajdyk T.J.
        • Shekhar A.
        Excitatory amino acid receptor antagonists block the cardiovascular and anxiety responses elicited by gamma-aminobutyric acidA receptor blockade in the basolateral amygdala of rats.
        J Pharmacol Exp Ther. 1997; 283: 969-977
        • Sajdyk T.J.
        • Shekhar A.
        Excitatory amino acid receptors in the basolateral amygdala regulate anxiety responses in the social interaction test.
        Brain Res. 1997; 764: 262-264
        • Savander V.
        • Go C.G.
        • LeDoux J.E.
        • Pitkanen A.
        Intrinsic connections of the rat amygdaloid complex.
        J Comp Neurol. 1995; 361: 345-368
        • Schiess M.C.
        • Asprodini E.K.
        • Rainnie D.G.
        • Shinnick-Gallagher P.
        The central nucleus of the rat amygdala.
        Brain Res. 1993; 604: 283-297
        • Shekhar A.
        GABA receptors in the region of the dorsomedial hypothalamus of rats regulate anxiety in the elevated plus-maze test. I. Behavioral measures.
        Brain Res. 1993; 627: 9-16
        • Shekhar A.
        • DiMicco J.A.
        Defense reaction elicited by injection of GABA antagonists and synthesis inhibitors into the posterior hypothalamus in rats.
        Neuropharmacology. 1987; 26: 407-417
        • Shekhar A.
        • Hingtgen J.N.
        • DiMicco J.A.
        Selective enhancement of shock avoidance responding elicited by GABA blockade in the posterior hypothalamus of rats.
        Brain Res. 1987; 420: 118-128
        • Soltis R.P.
        • DiMicco J.A.
        GABAA and excitatory amino acid receptors in dorsomedial hypothalamus and heart rate in rats.
        Am J Physiol. 1991; 260: R13-R20
        • Steriade M.
        Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance.
        Cereb Cortex. 1997; 7: 583-604
        • Sun N.
        • Cassell M.D.
        Intrinsic GABAergic neurons in the rat central extended amygdala.
        J Comp Neurol. 1993; 330: 381-404
        • Sun N.
        • Yi H.
        • Cassell M.D.
        Evidence for a GABAergic interface between cortical afferents and brainstem projection neurons in the rat central extended amygdala.
        J Comp Neurol. 1994; 340: 43-64
        • Takeuchi Y.
        • Matsushima S.
        • Matsushima R.
        • Hopkins D.A.
        Direct amygdaloid projections to the dorsal motor nucleus of the vagus nerve.
        Brain Res. 1983; 280: 143-147
        • Uwano T.
        • Nishijo H.
        • Ono T.
        • Tamura R.
        Neuronal responsiveness to various sensory stimuli, and associative learning in the rat amygdala.
        Neuroscience. 1995; 68: 339-361
        • van der Kooy D.
        • Koda L.Y.
        • McGinty J.F.
        • Gerfen C.R.
        • Bloom F.E.
        The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat.
        J Comp Neurol. 1984; 224: 1-24
        • Vazdarjanova A.
        • Cahill L.
        • McGaugh J.L.
        Disrupting basolateral amygdala function impairs unconditioned freezing and avoidance in rats.
        Eur J Neurosci. 2001; 14: 709-718
        • Walker D.L.
        • Davis M.
        Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in startle increases produced by conditioned versus unconditioned fear.
        J Neurosci. 1997; 17: 9375-9383
        • Wible Jr, J.H.
        • Luft F.C.
        • DiMicco J.A.
        Hypothalamic GABA suppresses sympathetic outflow to the cardiovascular system.
        Am J Physiol. 1988; 254: R680-R687
        • Wilson C.J.
        • Groves P.M.
        Spontaneous firing patterns of identified spiny neurons in the rat neostriatum.
        Brain Res. 1981; 220: 67-80
        • Young B.J.
        • Leaton R.N.
        Amygdala central nucleus lesions attenuate acoustic startle stimulus-evoked heart rate changes in rats.
        Behav Neurosci. 1996; 110: 228-237
        • Yu Y.H.
        • Blessing W.W.
        Neurons in amygdala mediate ear pinna vasoconstriction elicited by unconditioned salient stimuli in conscious rabbits.
        Auton Neurosci. 2001; 87: 236-242
        • Zahm D.S.
        • Jensen S.L.
        • Williams E.S.
        • Martin 3rd, J.R.
        Direct comparison of projections from the central amygdaloid region and nucleus accumbens shell.
        Eur J Neurosci. 1999; 11: 1119-1126