Antidepressant-like effects of cranial stimulation within a low-energy magnetic field in rats


      Evidence suggests that a novel type of magnetic resonance imaging (MRI) scan called echo planar magnetic resonance spectroscopic imaging (EP-MRSI) has mood-elevating actions in humans during the depressive phases of bipolar disorder. We examined whether a low-energy component of EP-MRSI (low-field magnetic stimulation [LFMS]) has antidepressant-like, locomotor-stimulating, or amnestic effects in rats.


      We examined the effects of LFMS on immobility in the forced swim test (FST) and activity within an open field in separate groups of rats. After exposure to forced swimming, rats received LFMS (three 20-min sessions at 1.5 G/cm and .75 V/m) before behavioral testing. We also examined the effects of LFMS on fear conditioning (FC), a learning paradigm that also involves exposure to stressful conditions.


      Low-field magnetic stimulation reduced immobility in the FST, an antidepressant-like effect qualitatively similar to that of standard antidepressants. Low-field magnetic stimulation did not alter locomotor activity or FC.


      Low-field magnetic stimulation has antidepressant-like effects in rats that seem unrelated to locomotor-activating or amnestic effects. These findings raise the possibility that electromagnetic fields can affect the brain biology and might have physiologic consequences that offer novel approaches to therapy for psychiatric disorders. These same consequences might render MRI-based scans more invasive than previously appreciated.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Bielajew C.
        • Konkle A.T.
        • Kentner A.C.
        • Baker S.L.
        • Stewart A.
        • Hutchins A.A.
        • et al.
        Strain and gender specific effects in the forced swim test.
        Stress. 2003; 6: 269-280
        • Bolwig T.G.
        Putative common pathways in therapeutic brain stimulation for affective disorders.
        CNS Spectr. 2003; 8: 490-495
        • Cancela L.M.
        • Rossi S.
        • Molina V.A.
        Effect of different restraint schedules on the immobility in the forced swim test.
        Brain Res Bull. 1991; 26: 671-675
        • Cryan J.F.
        • Markou A.
        • Lucki I.
        Assessing antidepressant activity in rodents.
        Trends Pharmacol Sci. 2002; 23: 238-245
        • Davis M.
        • Astrachan D.I.
        Conditioned fear and startle magnitude.
        J Exp Psychol Anim Behav Process. 1978; 4: 95-103
        • Detke M.J.
        • Rickels M.
        • Lucki I.
        Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants.
        Psychopharmacol. 1995; 121: 66-72
        • Duman R.S.
        • Heninger G.R.
        • Nestler E.J.
        A molecular and cellular theory of depression.
        Arch Gen Psychiatry. 1997; 54: 597-606
        • Ebert U.
        • Ziemann U.
        Altered seizure susceptibility after high-frequency transcranial magnetic stimulation in rats.
        Neurosci Lett. 1999; 273: 155-158
        • George M.S.
        Stimulating the brain.
        Sci Am. 2003; 289: 66-73
        • George M.S.
        • Nahas Z.
        • Molloy M.
        • Speer A.M.
        • Oliver N.C.
        • Li X.B.
        • et al.
        A controlled trial of daily left prefrontal cortex TMS for treating depression.
        Biol Psychiatry. 2000; 48: 962-970
        • George M.S.
        • Wassermann E.M.
        • Williams W.A.
        • Callahan A.
        • Ketter T.A.
        • Basser P.
        • et al.
        Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression.
        Neuroreport. 1995; 6: 1853-1856
        • Gur E.
        • Lerer B.
        • Dremencov E.
        • Newman M.E.
        Chronic repetitive transcranial magnetic stimulation induces subsensitivity of presynaptic serotonergic autoreceptor activity in rat brain.
        Neuroreport. 2000; 11: 2925-2929
        • Gur E.
        • Lerer B.
        • van de Kar L.D.
        • Newman M.E.
        Chronic rTMS induces subsensitivity of post-synaptic 5-HT1A receptors in rat hypothalamus.
        Int J Neuropsychopharmacol. 2004; 7: 335-340
        • Hausmann A.
        • Weis C.
        • Marksteiner J.
        • Hinterhuber H.
        • Humpel C.
        Chronic repetitive transcranial magnetic stimulation enhances c-fos in the parietal cortex and hippocampus.
        Brain Res Mol Brain Res. 2000; 76: 355-362
        • Keck M.E.
        • Welt T.
        • Muller M.B.
        • Erhardt A.
        • Ohl F.
        • Toschi N.
        • et al.
        Repetitive transcranial magnetic stimulation increases the release of dopamine in the mesolimbic and mesostriatal system.
        Neuropharmacology. 2002; 43: 101-109
        • Keck M.E.
        • Welt T.
        • Post A.
        • Muller M.B.
        • Toschi N.
        • Wigger A.
        • et al.
        Neuroendocrine and behavioral effects of repetitive transcranial magnetic stimulation in a psychopathological animal model are suggestive of antidepressant-like effects.
        Neuropsychopharmacology. 2001; 24: 337-349
        • Mague S.D.
        • Pliakas A.M.
        • Todtenkopf M.S.
        • Tomasiewicz H.C.
        • Zhang Y.
        • Stevens Jr, W.C.
        • et al.
        Antidepressant-like effects of kappa opioid receptor antagonists in the forced swim test in rats.
        J Pharmacol Exp Ther. 2003; 305: 323-330
        • Massot O.
        • Grimaldi B.
        • Bailly J.M.
        • Kochanek M.
        • Deschamps F.
        • Lambrozo J.
        • Fillion G.
        Magnetic field desensitizes 5-HT(1B) receptor in brain.
        Brain Res. 2000; 858: 143-150
        • Nestler E.J.
        • Gould E.
        • Manji H.
        • Buncan M.
        • Duman R.S.
        • Greshenfeld H.K.
        • et al.
        Preclinical models.
        Biol Psychiatry. 2002; 52: 503-528
        • Ogiue-Ikeda M.
        • Kawato S.
        • Ueno S.
        The effect of repetitive transcranial magnetic stimulation on long-term potentiation in rat hippocampus depends on stimulus intensity.
        Brain Res. 2003; 993: 222-226
        • Pliakas A.M.
        • Carlson R.
        • Neve R.L.
        • Konradi C.
        • Nestler E.J.
        • Carlezon Jr, W.A.
        Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element binding protein expression in nucleus accumbens.
        J Neurosci. 2001; 21: 7397-7403
        • Pol O.
        • Campmany L.
        • Gil M.
        • Armario A.
        Behavioral and neurochemical changes in response to acute stressors.
        Pharmacol Biochem Behav. 1992; 42: 407-412
        • Porsolt R.D.
        • Le Pichon M.
        • Jalfre M.
        Nature. 1977; 266: 730-732
        • Posse S.
        • Dager S.R.
        • Richards T.L.
        • Yuan C.
        • Ogg R.
        • Artru A.A.
        • et al.
        In vivo measurement of regional brain metabolic response to hyperventilation using magnetic resonance.
        Magn Reson Med. 1997; 37: 858-865
        • Rattiner L.M.
        • Davis M.
        • French C.T.
        • Ressler K.J.
        Brain-derived neurotrophic factor and tyrosine kinase receptor B involvement in amygdala-dependent fear conditioning.
        J Neurosci. 2004; 24: 4796-4806
        • Rohan M.L.
        • Parow A.
        • Stoll A.L.
        • Demopulos C.
        • Friedman A.
        • Dager S.
        • et al.
        Low field magnetic stimulation in bipolar depression using a MRI-based stimulator.
        Am J Psychiatry. 2004; 161: 93-98
        • Schafe G.E.
        • LeDoux J.E.
        Memory consolidation of auditory pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala.
        J Neurosci. 2000; 20: RC96
        • Scott P.A.
        • Cierpial M.A.
        • Kilts C.D.
        • Weiss J.M.
        Susceptibility and resistance of rats to stress-induced decreases in swim-test activity.
        Brain Res. 1996; 725: 217-230
        • Tsutsumi T.
        • Fujiki M.
        • Akiyoshi J.
        • Horinouchi Y.
        • Isogawa K.
        • Hori S.
        • Nagayama H.
        Effect of repetitive transcranial magnetic stimulation on forced swimming test.
        Prog Neuropsychopharmacol Biol Psychiatry. 2002; 26: 107-111
        • Tsvetkov E.
        • Carlezon Jr, W.A.
        • Benes F.M.
        • Kandel E.R.
        • Bolshakov V.Y.
        Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala.
        Neuron. 2002; 34: 289-300
        • Walker D.L.
        • Davis M.
        The role of amygdala glutamate receptors in fear learning, fear-potentiated startle, and extinction.
        Pharmacol Biochem Behav. 2002; 71: 379-392
        • Wasserman E.M.
        Risk and safety of repetitive transcranial magnetic stimulation.
        Electroencephalogr Clin Neurophysiol. 1998; 108: 1-16
        • Wasserman E.M.
        • Lisanby S.H.
        Therapeutic application of repetitive transcranial magnetic stimulation.
        Clin Neurophysiol. 2001; 112: 1367-1377
        • Willner P.
        The validity of animal models of depression.
        Psychopharmacology. 1984; 83: 1-16