Advertisement

Rapid delivery of nicotine promotes behavioral sensitization and alters its neurobiological impact

      Background

      Nicotine is highly addictive when it is inhaled from tobacco smoke, whereas nicotine replacement products, which usually deliver nicotine orally or transdermally, rarely lead to addiction. It has been proposed that this is due in part to differences in the rate of nicotine delivery to the brain under the two conditions. However, the mechanism by which rapid nicotine delivery facilitates the transition to addiction is not known. The ability of drugs to alter gene regulation and to produce sensitization has been implicated in addiction. We hypothesized, therefore, that varying the rate of nicotine administration may modulate its ability to elicit this form of plasticity.

      Methods

      Animals were treated with repeated intravenous infusions of nicotine over 5, 25, or 100 sec, and their locomotor responses were monitored over treatment days.

      Results

      We found that increasing the rate of intravenous nicotine infusion potentiated its ability to produce locomotor sensitization, and to induce c-fos and arc mRNA expression in mesocorticolimbic structures.

      Conclusions

      We suggest that rapid administration may increase vulnerability to addiction by altering the neurobiological impact of nicotine and promoting a form of neurobehavioral plasticity (i.e., sensitization) that can lead to pathological incentive motivation for drugs.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abreu M.E.
        • Bigelow G.E.
        • Fleisher L.
        • Walsh S.L.
        Effect of intravenous injection speed on responses to cocaine and hydromorphone in humans.
        Psychopharmacology (Berl). 2001; 154: 76-84
        • Badiani A.
        • Oates M.M.
        • Day H.E.W.
        • Watson S.J.
        • Akil H.
        • Robinson T.E.
        Environmental modulation of amphetamine-induced c-fos expression in D1 versus D2 striatal neurons.
        Behav Brain Res. 1999; 103: 203-209
        • Baker T.B.
        • Brandon T.H.
        • Chassin L.
        Motivational influences on cigarette smoking.
        Annu Rev Psychol. 2004; 55: 463-491
        • Balfour D.J.
        Neuroplasticity within the mesoaccumbens dopamine system and its role in tobacco dependence.
        Curr Drug Targets CNS Neurol Disord. 2002; 1: 413-421
        • Balfour D.J.K.
        Nicotine as the basis of the tobacco smoking habit.
        in: Balfour D.J.K. Psychotropic Drugs of Abuse. Vol Section 130. Pergamon press, London, Oxford1990: 453-481
        • Balster R.L.
        • Schuster C.R.
        Fixed-interval schedule of cocaine reinforcement.
        J Exp Anal Behav. 1973; 20: 119-129
        • Benwell M.E.M.
        • Balfour D.J.K.
        The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity.
        Br J Pharmacol. 1992; 105: 849-856
        • Clarke P.B.
        • Kumar R.
        The effects of nicotine on locomotor activity in nontolerant and tolerant rats.
        Br J Pharmacol. 1983; 78: 329-337
        • Crombag H.S.
        • Badiani A.
        • Robinson T.E.
        Signalled versus unsignalled intravenous amphetamine.
        Brain Res. 1996; 722: 227-231
        • Crombag H.S.
        • Ferrario C.
        • Myc P.P.
        • Robinson T.E.
        The rate of intravenous drug infusion does not affect psychomotor stimulant-taking or seeking.
        Behavioural Pharmacology. 2003; 14: S56-S56
        • Cullinan W.E.
        • Herman J.P.
        • Battaglia D.F.
        • Akil H.
        • Watson S.J.
        Pattern and time course of immediate early gene expression in rat brain following acute stress.
        Neuroscience. 1995; 64: 477-505
        • Curran E.J.
        • Watson S.J.
        Dopamine receptor mRNA expression patterns by opioid peptide cells in the nucleus accumbens of the rat.
        J Comp Neurol. 1995; 361: 57-76
        • De Vries T.J.
        • Schoffelmeer A.N.
        • Binnekade R.
        • Mulder A.H.
        • Vanderschuren L.J.
        Drug-induced reinstatement of heroin- and cocaine-seeking behavior following long-term extinction is associated with expression of behavioral sensitization.
        Eur J Neurosci. 1998; 10: 3565-3571
        • de Wit H.
        • Bodker B.
        • Ambre J.
        Rate of increase of plasma drug level influences subjective response in humans.
        Psychopharmacology. 1992; 107: 352-358
        • de Wit H.
        • Dudish S.
        • Ambre J.
        Subjective and behavioral effects of diazepam depend on its rate of onset.
        Psychopharmacology. 1993; 112: 324-330
        • Di Chiara G.
        A motivational learning hypothesis of the role of mesolimbic dopamine in compulsive drug use.
        J Psychopharmacol. 1998; 12: 54-67
        • Domino E.F.
        Nicotine induced behavioral locomotor sensitization.
        Prog Neuropsychopharmacol Biol Psychiatry. 2001; 25: 59-71
        • Ferguson S.M.
        • Thomas M.J.
        • Robinson T.E.
        Morphine-induced c-fos mRNA expression in striatofugal circuits.
        Neuropsychopharmacology. 2004; 29: 1664-1674
        • Fischman M.W.
        • Schuster C.R.
        Injection duration of cocaine in humans.
        Fed Proc. 1984; 43: 570
        • Gerfen C.R.
        The neostriatal mosaic.
        Trends Neurosci. 1992; 15: 133-139
        • Gossop M.
        • Griffiths P.
        • Powis B.
        • Strang J.
        Severity of dependence and route of administration of heroin, cocaine and amphetamines.
        Br J Addict. 1992; 87: 1527-1536
        • Gossop M.
        • Griffiths P.
        • Powis B.
        • Strang J.
        Cocaine.
        Br J Psychiatry. 1994; 164: 660-664
        • Hakan R.L.
        • Ksir C.J.
        Nicotine induced locomotor activity in rats.
        Pharmacol Biochem Behav. 1988; 29: 661-665
        • Hatsukami D.K.
        • Fischman M.W.
        Crack cocaine and cocaine hydrochloride. Are the differences myth or reality?.
        JAMA. 1996; 276: 1580-1588
        • Henningfield J.E.
        • Keenan R.M.
        Nicotine delivery kinetics and abuse liability.
        J Consult Clin Psychol. 1993; 61: 743-750
        • Hicks J.H.
        • Dani J.A.
        • Lester R.A.
        Regulation of the sensitivity of acetylcholine receptors to nicotine in habenula neurons.
        J Physiol. 2000; 529: 579-597
        • Horger B.A.
        • Shelton K.
        • Schenk S.
        Preexposure sensitizes rats to the rewarding effects of cocaine.
        Pharm Biochem Behav. 1990; 37: 707-711
        • Hughes J.R.
        Dependence potential and abuse liability of nicotine replacement therapies.
        Biomed Pharmacother. 1989; 43: 11-17
        • Hyman S.E.
        • Malenka R.C.
        Addiction and the brain.
        Nat Rev Neurosci. 2001; 2: 695-703
        • Ito R.
        • Robbins T.W.
        • Everitt B.J.
        Differential control over cocaine-seeking behavior by nucleus accumbens core and shell.
        Nature Neuroscience. 2004; 7: 389-397
        • Jentsch J.D.
        • Taylor J.R.
        Impulsivity resulting from frontostriatal dysfunction in drug abuse.
        Psychopharmacology. 1999; 146: 373-390
        • Kalman D.
        The subjective effects of nicotine.
        Nicotine Tob Res. 2002; 4: 25-70
        • Kato S.
        • Wakasa Y.
        • Yanagita T.
        Relationship between minimum reinforcing doses and injection speed in cocaine and pentobarbital self-administration in crab-eating monkeys.
        Pharmacol Biochem Behav. 1987; 28: 407-410
        • Kiba H.
        • Jayaraman A.
        Nicotine induced c-fos expression in the striatum is mediated mostly by dopamine D1 receptor and is dependent on NMDA stimulation.
        Brain Res Mol Brain Res. 1994; 23: 1-13
        • Kollins S.H.
        • Rush C.R.
        • Pazzaglia P.J.
        • Ali J.A.
        Comparison of acute behavioral effects of sustained-release and immediate-release methylphenidate.
        Exp Clin Psychopharmacol. 1998; 6: 367-374
        • Ksir C.
        Acute and chronic nicotine effects on measures of activity in rats.
        Psychopharmacology (Berl). 1994; 115: 105-109
        • Ksir C.
        • Hakan R.
        • Hall D.P.
        • Kellar K.J.
        Exposure to nicotine enhances the behavioral stimulant effect of nicotine and increases binding of [3H]acetylcholine to nicotinic receptors.
        Neuropharmacology. 1985; 24: 527-531
        • Le Houezec J.
        Role of nicotine pharmacokinetics in nicotine addiction and nicotine replacement therapy.
        Int J Tuberc Lung Dis. 2003; 7: 811-819
        • Lester R.A.
        • Dani J.A.
        Acetylcholine receptor desensitization induced by nicotine in habenula neurons.
        J Neurophysiol. 1995; 74: 195-206
        • Lett B.T.
        Repeated exposures intensify rather than diminish the rewarding effects of amphetamine, morphine, and cocaine.
        Psychopharmacology (Berlin). 1989; 98: 357-362
        • MacDermott A.B.
        • Role L.W.
        • Siegelbaum S.A.
        Presynaptic ionotropic receptors and the control of transmitter release.
        Annu Rev Neurosci. 1999; 22: 443-485
        • Mansvelder H.D.
        • Keath J.R.
        • McGehee D.S.
        Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas.
        Neuron. 2002; 33: 905-919
        • Mansvelder H.D.
        • McGehee D.S.
        Long-term potentiation of excitatory inputs to brain reward areas by nicotine.
        Neuron. 2000; 27: 349-357
        • Mathieu-Kia A.M.
        • Pages C.
        • Besson M.J.
        Inducibility of c-Fos protein in visuo-motor system and limbic structures after acute and repeated administration of nicotine in the rat.
        Synapse. 1998; 29: 343-354
        • Matta S.G.
        • Foster C.A.
        • Sharp B.M.
        Nicotine stimulates the expression of cFos protein in the parvocellular paraventricular nucleus and brainstem catecholaminergic regions.
        Endocrinology. 1993; 132: 2149-2156
        • McFarlane D.K.
        • Martonyi B.J.
        • Robinson T.E.
        An inexpensive automated system for the measurement of rotational behavior in small animals.
        Behav Res Meth Inst & Computers. 1992; 24: 414-419
        • Miller D.K.
        • Wilkins L.H.
        • Bardo M.T.
        • Crooks P.A.
        • Dwoskin L.P.
        Once weekly administration of nicotine produces long-lasting locomotor sensitization in rats via a nicotinic receptor-mediated mechanism.
        Psychopharmacology (Berl). 2001; 156: 469-476
        • Mumford G.K.
        • Evans S.M.
        • Fleishaker J.C.
        • Griffiths R.R.
        Alprazolam absorption kinetics affects abuse liability.
        Clin Pharmacol Ther. 1995; 57: 356-365
        • Nestler E.J.
        Molecular basis of long-term plasticity underlying addiction.
        Nat Rev Neurosci. 2001; 2: 119-128
        • Panlilio L.V.
        • Goldberg S.R.
        • Gilman J.P.
        • Jufer R.
        • Cone E.J.
        • Schindler C.W.
        Effects of delivery rate and noncontingent infusion of cocaine on cocaine self-administration in rhesus monkeys.
        Psychopharmacology (Berl). 1998; 137: 253-258
        • Piazza P.V.
        • Deminière J.M.
        • Le Moal M.
        • Simon H.
        Factors that predict individual vulnerability to amphetamine self- administration.
        Science. 1989; 245: 1511-1513
        • Piazza P.V.
        • Deminière J.M.
        • Le Moal M.
        • Simon H.
        Stress- and pharmacologically-induced behavioral sensitization increases vulnerability to acquisition of amphetamine self- administration.
        Brain Res. 1990; 514: 22-26
        • Pich E.M.
        • Pagliusi S.R.
        • Tessari M.
        • Talabot-Ayer D.
        • Hooft van Huijsduijnen R.
        • Chiamulera C.
        Common neural substrates for the addictive properties of nicotine and cocaine.
        Science. 1997; 275: 83-86
        • Pickens R.
        • Dougherty J.
        • Thompson T.
        Effects of volume and duration of infusion on cocaine reinforcement with concurrent activity recording.
        in: Minutes of the Meeting of the Committee on Problems of Drug Dependence, NAS-NRC, Washington, D.C1969: 5805-5811
        • Pidoplichko V.I.
        • DeBiasi M.
        • Williams J.T.
        • Dani J.A.
        Nicotine activates and desensitizes midbrain dopamine neurons.
        Nature. 1997; 390: 401-404
        • Pontieri F.E.
        • Tanda G.
        • Di Chiara G.
        Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens.
        Proc Natl Acad Sci U S A. 1995; 92: 12304-12308
        • Porrino L.J.
        Functional consequences of acute cocaine treatment depend on route of administration.
        Psychopharmacology. 1993; 112: 343-351
        • Ren T.
        • Sagar S.M.
        Induction of c-fos immunostaining in the rat brain after the systemic administration of nicotine.
        Brain Res Bull. 1992; 29: 589-597
        • Robinson T.E.
        • Berridge K.C.
        The neural basis of drug craving.
        Brain Res Rev. 1993; 18: 247-291
        • Robinson T.E.
        • Berridge K.C.
        The psychology and neurobiology of addiction.
        Addiction. 2000; 95: S91-S117
        • Robinson T.E.
        • Berridge K.C.
        Addiction.
        Annu Rev Psychol. 2003; 54: 25-53
        • Salminen O.
        • Lahtinen S.
        • Ahtee L.
        Expression of Fos protein in various rat brain areas following acute nicotine and diazepam.
        Pharmacol Biochem Behav. 1996; 54: 241-248
        • Samaha A.N.
        • Li Y.
        • Robinson T.E.
        The rate of intravenous cocaine administration determines susceptibility to sensitization.
        J Neurosci. 2002; 22: 3244-3250
        • Samaha A.N.
        • Mallet N.
        • Ferguson S.M.
        • Gonon F.
        • Robinson T.E.
        The rate of cocaine administration alters gene regulation and behavioral plasticity.
        J Neurosci. 2004; 24: 6362-6370
        • Schilstrom B.
        • De Villiers S.
        • Malmerfelt A.
        • Svensson T.H.
        • Nomikos G.G.
        Nicotine-induced Fos expression in the nucleus accumbens and the medial prefrontal cortex of the rat.
        Synapse. 2000; 36: 314-321
        • Sellings L.H.
        • Clarke P.B.
        Segregation of amphetamine reward and locomotor stimulation between nucleus accumbens medial shell and core.
        J Neurosci. 2003; 23: 6295-6303
        • Shim I.
        • Kim H.T.
        • Kim Y.H.
        • Chun B.G.
        • Hahm D.H.
        • Lee E.H.
        • et al.
        Role of nitric oxide synthase inhibitors and NMDA receptor antagonist in nicotine-induced behavioral sensitization in the rat.
        Eur J Pharmacol. 2002; 443: 119-124
        • Shoaib M.
        • Schindler C.W.
        • Goldberg S.R.
        • Pauly J.R.
        Behavioral and biochemical adaptations to nicotine in rats.
        Psychopharmacology (Berl). 1997; 134: 121-130
        • Shoaib M.
        • Stolerman I.P.
        MK801 attenuates behavioral adaptation to chronic nicotine administration in rats.
        Br J Pharmacol. 1992; 105: 514-515
        • Stolerman I.P.
        • Fink R.
        • Jarvik M.E.
        Acute and chronic tolerance to nicotine measured by activity in rats.
        Psychopharmacologia. 1973; 30: 329-342
        • Uslaner J.
        • Badiani A.
        • Norton C.S.
        • Day H.E.
        • Watson S.J.
        • Akil H.
        • et al.
        Amphetamine and cocaine induce different patterns of c-fos mRNA expression in the striatum and subthalamic nucleus depending on environmental context.
        Eur J Neurosci. 2001; 13: 1977-1983
        • Uslaner J.M.
        • Crombag H.S.
        • Ferguson S.M.
        • Robinson T.E.
        Cocaine-induced psychomotor activity is associated with its ability to induce c-fos mRNA expression in the subthalamic nucleus.
        Eur J Neurosci. 2003; 17: 2180-2186
        • Uslaner J.M.
        • Norton C.S.
        • Watson S.J.
        • Akil H.
        • Robinson T.E.
        Amphetamine-induced c-fos mRNA expression in the caudate-putamen and subthalamic nucleus.
        J Neurochem. 2003; 85: 105-114
        • Vezina P.
        Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs.
        Neurosci Biobehav Rev. 2004; 27: 827-839
        • Wakasa Y.
        • Takada K.
        • Yanagita T.
        Reinforcing effect as a function of infusion speed in intravenous self-administration of nicotine in rhesus monkeys.
        Nihon Shinkei Seishin Yakurigaku Zasshi. 1995; 15: 53-59
        • Weeks J.R.
        Long-term intravenous infusions.
        in: Meyers R.D. Methods in Psychobiology. Vol 2. Academic Press, London1972: 155-168
        • West R.
        • Hajek P.
        • Foulds J.
        • Nilsson F.
        • May S.
        • Meadows A.
        A comparison of the abuse liability and dependence potential of nicotine patch, gum, spray and inhaler.
        Psychopharmacology (Berl). 2000; 149: 198-202
        • Winger G.
        • Hofmann F.G.
        • Woods J.H.
        A Handbook on Drug and Alcohol Abuse. Third ed. Oxford University Press, New York1992
        • Wonnacott S.
        Presynaptic nicotinic ACh receptors.
        Trends Neurosci. 1997; 20: 92-98
        • Wooltorton J.R.A.
        • Pidoplichko V.I.
        • Broide R.S.
        • Dani J.A.
        Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas.
        J Neurosci. 2003; 23: 3176-3185