Actions of methylphenidate on dopaminergic neurons of the ventral midbrain


      Methylphenidate has been suggested to exert its therapeutic effect mainly by blocking the dopamine transporter. In spite of the importance of this interaction, no detailed information is available yet on its actions on single dopaminergic neurons.


      We examined the effects of methylphenidate on dopaminergic neurons using electrophysiological recordings from rat midbrain slices.


      Methylphenidate inhibited spontaneous firing and caused a membrane hyperpolarization in current clamp or an outward current in voltage clamp. These effects were antagonized by the D2 receptor antagonist sulpiride. An acute dopamine-depleting treatment of the slices with the dopa-decarboxylase inhibitor carbidopa significantly reduced the effects of methylphenidate. This drug potentiated, in a concentration-dependent manner, cellular responses to exogenous dopamine application.


      Our electrophysiological data are consistent with the hypothesis that methylphenidate inhibits dopamine transporter and suggest that the depression of firing is mediated by the release of newly synthesized dopamine which accumulates extracellularly due to inhibition of its reuptake.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Axelrod J.
        • Mueller R.A.
        • Henry J.P.
        • Stephens P.M.
        Changes in enzymes involved in the biosynthesis and metabolism of noradrenaline and adrenaline after psychosocial stimulation.
        Nature. 1970; 225: 1059-1060
        • Bonci A.
        • Bernardi G.
        • Grillner P.
        • Mercuri N.B.
        The dopamine-containing neuron.
        Trends Pharmacol Sci. 2003; 24: 172-177
        • Brodie M.S.
        • Dunwiddie T.V.
        Cocaine effects in the ventral tegmental area.
        Naunyn Schmiedebergs Arch Pharmacol. 1990; 342: 660-665
        • Burchett S.A.
        • Bannon M.J.
        Serotonin, dopamine and norepinephrine transporter mRNAs.
        Brain Res Mol Brain Res. 1997; 49: 95-102
        • Butcher S.P.
        • Liptrot J.
        • Aburthnott G.W.
        Characterisation of methylphenidate and nomifensine induced dopamine release in rat striatum using in vivo brain microdialysis.
        Neurosci Lett. 1991; 122: 245-248
        • Cameron D.L.
        • Williams J.T.
        Cocaine inhibits GABA release in the VTA through endogenous 5-HT.
        J Neurosci. 1994; 14: 6763-6767
        • Cameron D.L.
        • Williams J.T.
        Opposing roles for dopamine and serotonin at presynaptic receptors in the ventral tegmental area.
        Clin Exp Pharmacol Physiol. 1995; 22: 841-845
        • Chen J.G.
        • Sachpatzidis A.
        • Rudnick G.
        The third transmembrane domain of the serotonin transporter contains residues associated with substrate and cocaine binding.
        J Biol Chem. 1997; 272: 28321-28327
        • Choong K.C.
        • Shen R.Y.
        Methylphenidate restores VTA dopamine neuron activity in prenatal ethanol exposed rats by augmenting dopamine neurotransmission.
        J Pharmacol Exp Ther. 2004; 309: 444-451
        • Cook Jr, E.H.
        • Stein M.A.
        • Krasowski M.D.
        • Cox N.J.
        • Olkon D.M.
        • Kieffer J.E.
        • et al.
        Association of attention-deficit disorder and the dopamine transporter gene.
        Am J Hum Genet. 1995; 56: 993-998
        • Drevets W.C.
        • Gautier C.
        • Price J.C.
        • Kupfer D.J.
        • Kinahan P.E.
        • Grace A.A.
        • et al.
        Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria.
        Biol Psychiatry. 2001; 49: 81-96
        • Gainetdinov R.R.
        • Caron M.G.
        An animal model of attention deficit hyperactivity disorder.
        Mol Med Today. 2000; 6: 43-44
        • Gainetdinov R.R.
        • Caron M.G.
        Genetics of childhood disorders: XXIV: ADHD, part 8: Hyperdopaminergic mice as an animal model of ADHD.
        J Am Acad Child Adolesc Psychiatry. 2001; 40: 380-382
        • Gainetdinov R.R.
        • Wetsel W.C.
        • Jones S.R.
        • Levin E.D.
        • Jaber M.
        • Caron M.G.
        Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity.
        Science. 1999; 283: 397-401
        • Giros B.
        • Jaber M.
        • Jones S.R.
        • Wightman R.M.
        • Caron M.G.
        Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter.
        Nature. 1996; 379: 606-612
        • Grace A.A.
        • Onn S.P.
        Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro.
        J Neurosci. 1989; 9: 3463-3481
        • Hendley E.D.
        • Snyder S.H.
        • Fauley J.J.
        • LaPidus J.B.
        Stereoselectivity of catecholamine uptake by brain synaptosomes.
        J Pharmacol Exp Ther. 1972; 183: 103-116
        • Hunt R.D.
        • Cohen D.J.
        • Anderson G.
        • Clark L.
        Possible change in noradrenergic receptor sensitivity following methylphenidate treatment.
        Life Sci. 1984; 35: 885-897
        • Ishimatsu M.
        • Kidani Y.
        • Tsuda A.
        • Akasu T.
        Effects of methylphenidate on the membrane potential and current in neurons of the rat locus coeruleus.
        J Neurophysiol. 2002; 87: 1206-1212
        • Izenwasser S.
        • Coy A.E.
        • Ladenheim B.
        • Loeloff R.J.
        • Cadet J.L.
        • French D.
        Chronic methylphenidate alters locomotor activity and dopamine transporters differently from cocaine.
        Eur J Pharmacol. 1999; 373: 187-193
        • Johnson S.W.
        • Mercuri N.B.
        • North R.A.
        5-hydroxytryptamine1B receptors block the GABAB synaptic potential in rat dopamine neurons.
        J Neurosci. 1992; 12: 2000-2006
        • Kirley A.
        • Lowe N.
        • Hawi Z.
        • Mullins C.
        • Daly G.
        • Waldman I.
        • et al.
        Association of the 480 bp DAT1 allele with methylphenidate response in a sample of Irish children with ADHD.
        Am J Med Genet. 2003; 121B: 50-54
        • Koe B.K.
        Molecular geometry of inhibitors of the uptake of catecholamines and serotonin in synaptosomal preparations of rat brain.
        J Pharmacol Exp Ther. 1976; 199: 649-661
        • Lacey M.G.
        • Mercuri N.B.
        • North R.A.
        Actions of cocaine on rat dopaminergic neurones in vitro.
        Br J Pharmacol. 1990; 99: 731-735
        • Mercuri N.B.
        • Bonci A.
        • Calabresi P.
        • Stefani A.
        • Bernardi G.
        Properties of the hyperpolarization-activated cation current Ih in rat midbrain dopaminergic neurons.
        Eur J Neurosci. 1995; 7: 462-469
        • Meririnne E.
        • Kankaanpaa A.
        • Seppala T.
        Rewarding properties of methylphenidate.
        J Pharmacol Exp Ther. 2001; 298: 539-550
        • Nomikos G.G.
        • Damsma G.
        • Wenkstern D.
        • Fibiger H.C.
        In vivo characterization of locally applied dopamine uptake inhibitors by striatal microdialysis.
        Synapse. 1990; 6: 106-112
        • Rebec G.V.
        • Segal D.S.
        Dose-dependent biphasic alterations in the spontaneous activity of neurons in the rat neostriatum produced by d-amphetamine and methylphenidate.
        Brain Res. 1978; 150: 353-366
        • Ritz M.C.
        • Lamb R.J.
        • Goldberg S.R.
        • Kuhar M.J.
        Cocaine receptors on dopamine transporters are related to self-administration of cocaine.
        Science. 1987; 237: 1219-1223
        • Ross S.B.
        Antagonism by methylphenidate of the stereotyped behaviour produced by (+)-amphetamine in reserpinized rats.
        J Pharm Pharmacol. 1978; 30: 253-254
        • Ruskin D.N.
        • Bergstrom D.A.
        • Shenker A.
        • Freeman L.E.
        • Baek D.
        • Walters J.R.
        Drugs used in the treatment of attention-deficit/hyperactivity disorder affect postsynaptic firing rate and oscillation without preferential dopamine autoreceptor action.
        Biol Psychiatry. 2001; 49: 340-350
        • Sandoval V.
        • Riddle E.L.
        • Hanson G.R.
        • Fleckenstein A.E.
        Methylphenidate redistributes vesicular monoamine transporter-2.
        J Neurosci. 2002; 22: 8705-8710
        • Segal D.S.
        • Kuczenski R.
        Escalating dose-binge treatment with methylphenidate.
        J Pharmacol Exp Ther. 1999; 291: 19-30
        • Shuster L.
        • Hudson J.
        • Anton M.
        • Righi D.
        Sensitization of mice to methylphenidate.
        Psychopharmacology (Berl). 1982; 77: 31-36
        • Stathis M.
        • Scheffel U.
        • Lever S.Z.
        • Boja J.W.
        • Carroll F.I.
        • Kuhar M.J.
        Rate of binding of various inhibitors at the dopamine transporter in vivo.
        Psychopharmacology (Berl). 1995; 119: 376-384
        • Swanson J.M.
        • Volkow N.D.
        Serum and brain concentrations of methylphenidate.
        Neurosci Biobehav Rev. 2003; 27: 615-621
        • Volkow N.D.
        • Fowler J.S.
        • Wang G.
        • Ding Y.
        • Gatley S.J.
        Mechanism of action of methylphenidate.
        J Atten Disord. 2002; 6: S31-S43
        • Volkow N.D.
        • Wang G.
        • Fowler J.S.
        • Logan J.
        • Gerasimov M.
        • Maynard L.
        • et al.
        Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain.
        J Neurosci. 2001; 21: RC121
        • Volkow N.D.
        • Wang G.J.
        • Fowler J.S.
        • Gatley S.J.
        • Logan J.
        • Ding Y.S.
        • et al.
        Blockade of striatal dopamine transporters by intravenous methylphenidate is not sufficient to induce self-reports of “high”.
        J Pharmacol Exp Ther. 1999; 288: 14-20
        • Wayment H.K.
        • Deutsch H.
        • Schweri M.M.
        • Schenk J.O.
        Effects of methylphenidate analogues on phenethylamine substrates for the striatal dopamine transporter.
        J Neurochem. 1999; 72: 1266-1274
        • Wu Y.N.
        • Mercuri N.B.
        • Johnson S.W.
        Presynaptic inhibition of gamma-aminobutyric acidB-mediated synaptic current by adenosine recorded in vitro in midbrain dopamine neurons.
        J Pharmacol Exp Ther. 1995; 273: 576-581