A retinoic-acid critical period in the early postnatal mouse brain


      A normal supply of vitamin A, which regulates gene expression through its active form retinoic acid, is required by many organs; both excess and deficiency can be teratogenic. Very little is known about the role of retinoic acid in maturation of the mammalian forebrain.


      As retinoic acid cannot be visualized directly, we mapped its actions in the forebrain with indirect morphologic methods and by applying retinoic acid overdoses to early postnatal mice.


      During this time, the morphologic indicators of retinoic acid actions are localized mainly in the limbic system and they undergo rapid changes. Retinoic acid overdoses can cause lasting behavioral abnormalities that point to disrupted limbic functions. In the anterior cingulate cortex, inhibitory interneurons are affected, and in the hippocampus, primarily the dentate gyrus is abnormal.


      Retinoic acid is involved in functional maturation of limbic regions of the forebrain with a critical stage early postnatally in mice, when their brains are particularly vulnerable to vitamin A perturbations. This developmental time in mice compares with the second trimester of gestation in humans, a stage when in genetically predisposed individuals the corresponding brain regions are known to pass through a period of increased susceptibility to environmental disturbances.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Adams J.
        • Holson R.R.
        The neurobehavioral teratology of vitamin A analogs.
        in: Slikker W. Chang L.W. Handbook of Developmental Neurotoxicology. Academic Press, San Diego1998: 631-642
        • Alcantara S.
        • de Lecea L.
        • Del Rio J.A.
        • Ferrer I.
        • Soriano E.
        Transient colocalization of parvalbumin and calbindin D28k in the postnatal cerebral cortex.
        Eur J Neurosci. 1996; 8: 1329-1339
        • Altman J.
        • Bayer S.
        Postnatal development of the hippocampal dentate gyrus under normal and experimental conditions.
        in: Isaacson R.L. Pribram K.H. The Hippocampus, vol 1 Structure and Development. Plenum Press, New York and London1975: 95-122
        • Avantaggiato V.
        • Acampora D.
        • Tuorto F.
        • Simeone A.
        Retinoic acid induces stage-specific repatterning of the rostral central nervous system.
        Dev Biol. 1996; 175: 347-357
        • Benes F.M.
        • Vincent S.L.
        • Todtenkopf M.
        The density of pyramidal and nonpyramidal neurons in anterior cingulate cortex of schizophrenic and bipolar subjects.
        Biol Psychiatry. 2001; 50: 395-406
        • Bromet E.J.
        • Fennig S.
        Epidemiology and natural history of schizophrenia.
        Biol Psychiatry. 1999; 46: 871-881
        • Buka S.L.
        • Tsuang M.T.
        • Torrey E.F.
        • Klebanoff M.A.
        • Bernstein D.
        • Yolken R.H.
        Maternal infections and subsequent psychosis among offspring.
        Arch Gen Psychiatry. 2001; 58: 1032-1037
        • Chiang M.Y.
        • Misner D.
        • Kempermann G.
        • Schikorski T.
        • Giguere V.
        • Sucov H.M.
        • et al.
        An essential role for retinoid receptors RARb and RXRg in long-term potentiation and depression.
        Neuron. 1998; 21: 1353-1361
        • Clagett-Dame M.
        • DeLuca H.F.
        The role of vitamin A in mammalian reproduction and embryonic development.
        Annu Rev Nutr. 2002; 22: 347-381
        • Crandall J.E.
        • Dibble C.
        • Butler D.
        • Pays L.
        • Ahmad N.
        • Kostek C.
        • et al.
        Patterning of olfactory sensory connections is mediated by extracellular matrix proteins in the nerve layer of the olfactory bulb.
        J Neurobiol. 2000; 45: 195-206
        • Crawley J.N.
        What’s Wrong With My Mouse? Behavioral Phenotyping of Transgenic and Knockout Mice. Wiley-Liss, New York2000
        • Dolan R.J.
        Emotion, cognition and behavior.
        Science. 2002; 298: 1191-1194
        • Duester G.
        • Mic F.A.
        • Molotkov A.
        Cytosolic retinoid dehydrogenases govern ubiquitous metabolism of retinol to retinaldehyde followed by tissue-specific metabolism to retinoic acid.
        Chem Biol Interact. 2003; 143–144: 201-210
        • Eyles D.W.
        • McGrath J.J.
        • Reynolds G.P.
        Neuronal calcium-binding proteins and schizophrenia.
        Schizophr Res. 2002; 57: 27-34
        • Goodman A.B.
        Three independent lines of evidence suggest retinoids as causal to schizophrenia.
        Proc Natl Acad Sci U S A. 1998; 95: 7240-7244
        • Hermanson O.
        • Glass C.
        • Rosenfeld M.G.
        Nuclear receptor coregulators.
        Trends Endocrinol Metab. 2002; 13: 55-60
        • Hornby S.J.
        • Ward S.J.
        • Gilbert C.E.
        Eye birth defects in humans may be caused by a recessively-inherited genetic predisposition to the effects of maternal vitamin A deficiency during pregnancy.
        Med Sci Monit. 2003; 9: HY23-HY26
        • Husson M.
        • Enderlin V.
        • Alfos S.
        • Feart C.
        • Higueret P.
        • Pallet V.
        Triiodothyronine administration reverses vitamin A deficiency-related hypo-expression of retinoic acid and triiodothyronine nuclear receptors and of neurogranin in rat brain.
        Br J Nutr. 2003; 90: 191-198
        • Jacobson M.
        Developmental Neurobiology. 3rd ed. Plenum Press, New York1991
        • Krezel W.
        • Ghyselinck N.
        • Samad T.A.
        • Dupe V.
        • Kastner P.
        • Borrelli E.
        • et al.
        Impaired locomotion and dopamine signaling in retinoid receptor mutant mice.
        Science. 1998; 279: 863-867
        • Kurlandsky S.B.
        • Gamble M.V.
        • Ramakrishnan R.
        • Blaner W.S.
        Plasma delivery of retinoic acid to tissues in the rat.
        J Biol Chem. 1995; 270: 17850-17857
        • LaMantia A.-S.
        Forebrain induction, retinoic acid and vulnerability to schizophrenia.
        Biol Psychiatry. 1999; 46: 19-30
        • Langman J.
        • Welch G.W.
        Excess vitamin A and development of the cerebral cortex.
        J Comp Neurol. 1967; 131: 15-26
        • Luesse H.G.
        • Roskoden T.
        • Linke R.
        • Otten U.
        • Heese K.
        • Schwegler H.
        Modulation of mRNA expression of the neurotrophins of the nerve growth factor family and their receptors in the septum and hippocampus of rats after transient postnatal thyroxine treatment. I. Expression of nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin 4 mRNA.
        Exp Brain Res. 1998; 119: 1-8
        • Luo T.
        • Wagner E.
        • Grün F.
        • Dräger U.C.
        Retinoic acid signaling in the brain marks formation of optic projections, maturation of the dorsal telencephalon and function of limbic sites.
        J Comp Neurol. 2004; 470: 297-316
        • Mark M.
        • Chambon P.
        Functions of RARs and RXRs in vivo.
        Pure Appl Chem. 2003; 75: 1709-1732
        • McCaffery P.
        • Dräger U.C.
        Hotspots of retinoic acid synthesis in the developing spinal cord.
        Proc Natl Acad Sci U S A. 1994; 91: 7194-7197
        • McCormick C.M.
        • Rioux T.
        • Fisher R.
        • Lang K.
        • MacLaury K.
        • Teillon S.M.
        Effects of neonatal corticosterone treatment on maze performance and HPA axis in juvenile rats.
        Physiol Behav. 2001; 74: 371-379
        • Mineur Y.S.
        • Crusio W.E.
        Behavioral and neuroanatomical characterization of FVB/N inbred mice.
        Brain Res Bull. 2002; 57: 41-47
        • Misner D.L.
        • Jacobs S.
        • Shimizu Y.
        • de Urquiza A.M.
        • Solomin L.
        • Perlmann T.
        • et al.
        Vitamin A deprivation results in reversible loss of hippocampal long-term synaptic plasticity.
        Proc Natl Acad Sci U S A. 2001; 98: 11714-11719
        • Mission J.P.
        • Takahashi T.
        • Caviness V.S.
        Ontogeny of radial and other astroglial cells in murine cerebral cortex.
        Glia. 1991; 4: 138-148
        • Monaghan A.P.
        • Bock D.
        • Gass P.
        • Schwager A.
        • Wolfer D.P.
        • Lipp H.P.
        • et al.
        Defective limbic system in mice lacking the tailless gene.
        Nature. 1997; 390: 515-517
        • Nadarajah B.
        • Alifragis P.
        • Wong R.O.
        • Parnavelas J.G.
        Neuronal migration in the developing cerebral cortex.
        Cereb Cortex. 2003; 13: 607-611
        • Nau H.
        • Chahoud I.
        • Dencker L.
        • Lammer E.J.
        • Scott W.J.
        Teratogenicity of vitamin A and retinoids. Vitamin A in health and disease.
        in: Blomhoff R. Vitamin A in Health and Disease. Marcel Dekker, New York/Basel/Hong Kong1994: 615-663
        • Paule M.
        • Rowland A.
        • Ferguson S.
        • Chelonis J.J.
        • Tannock R.
        • Swanson J.M.
        • et al.
        Attention deficit/hyperactivity disorder.
        Neurotoxicol Teratol. 2000; 22: 631-651
        • Rosales F.J.
        • Ross A.C.
        Acute inflammation induces hyporetinemia and modifies the plasma and tissue response to vitamin A supplementation in marginally vitamin A-deficient rats.
        J Nutr. 1998; 128: 960-966
        • Roskoden T.
        • Otten U.
        • Schwegler H.
        Early postnatal corticosterone administration regulates neurotrophins and their receptors in septum and hippocampus of the rat.
        Exp Brain Res. 2004; 154: 183-191
        • Rossant J.
        • Zirngibl R.
        • Cado D.
        • Shago M.
        • Giguère V.
        Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis.
        Genes Dev. 1991; 5: 1333-1344
        • Shenefelt R.E.
        Morphogenesis of malformations in hamsters caused by retinoic acid.
        Teratology. 1972; 5: 403-418
        • Smith D.
        • Wagner E.
        • Koul O.
        • McCaffery P.
        • Dräger U.C.
        Retinoic acid synthesis for the developing telencephalon.
        Cereb Cortex. 2001; 11: 894-905
        • Sohn Y.C.
        • Kim S.W.
        • Lee S.
        • Kong Y.Y.
        • Na D.S.
        • Lee S.K.
        • et al.
        Dynamic inhibition of nuclear receptor activation by corepressor binding.
        Mol Endocrinol. 2003; 17: 366-372
        • Soprano D.R.
        • Blaner W.S.
        Plasma retinol-binding proteins.
        in: Sporn M.B. Roberts A.B. Goodman D.S. The Retinoids Biology, Chemistry and Medicine. 2nd ed. Raven Press, New York1994: 257-281
        • Wagner E.
        • Luo T.
        • Dräger U.C.
        Retinoic acid synthesis in the postnatal mouse brain marks distinct developmental stages and functional systems.
        Cereb Cortex. 2002; 12: 1244-1253
        • Wagner E.
        • McCaffery P.
        • Dräger U.C.
        Retinoic acid in the formation of the dorso-ventral retina and its central projections.
        Dev Biol. 2000; 222: 460-470
        • Wilson J.G.
        • Roth C.B.
        • Warkany J.
        An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effects of restoration of vitamin A at various times during gestation.
        Am J Anat. 1953; 92: 189-217